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Abstract

Inspired by the pioneering work of Petri and the rise of diagrammatic formalisms
to reason about networks of open systems, we introduce the resource calculus—a
graphical language for distributed systems. Like process algebras, the resource cal-
culus is modular, with primitive connectors from which all diagrams can be built.
We characterise its equational theory by proving a full completeness result for an in-
terpretation in the symmetric monoidal category of additive relations—a result that
constitutes the main contribution of this thesis.

Additive relations are frequently exploited by model-checking algorithms for Petri
nets. In this thesis, we recognise them as a fundamental algebraic structure of concur-
rency and use them as an axiomatic framework. Surprisingly, the resource calculus
has the same syntax as that of interacting Hopf algebras, a diagrammatic formalism
for linear (time-invariant dynamical) systems. Indeed, the approach stems from the
simple but fruitful realisation that, by replacing values in a field with values in the
semiring of non-negative integers, concurrent behaviour patterns emerge. This change
of model reflects the interpretation of diagrams as systems manipulating limited and
discrete resources instead of continuous signals.

We also extend the resource calculus in two orthogonal directions. First, by adding
an affine primitive to express access to a constant quantity of resources. The extended
calculus is remarkably expressive and allows the formulation of non-additive patterns
of behaviour, like mutual exclusion. Once more, we characterise it—this time as the
equational theory of the symmetric monoidal category of polyhedral relations, discrete
analogues of polyhedra in convex geometry. Secondly, we add a synchronous register
to model stateful systems. The stateful resource calculus is expressive enough to
faithfully capture the behaviour of Petri nets while being strictly more expressive. It
is also shown to axiomatise a category of open Petri nets, in the style of the connector
algebras of nets with boundaries first studied by Bruni, Melgratti, Montanari and
Sobociński.
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Chapter 1

Introduction

1.1 Motivation

This thesis is an effort in the pursuit of canonical algebraic structures in concurrency
theory. Before delving into the technical aspects of our work, we would like to provide
some motivation for our contribution and a short summary of our guiding principles—
a manifesto of sorts.

In the broadest sense, computer science is concerned with generating controlled
behaviour from dynamical systems. Typically, the observable behaviour and state
space of the underlying physical process is coarse-grained into an—often discrete—
collection of events corresponding to state-changes of interest to the observer.

Initially, theoretical computer science studied mostly extensional phenomena, that
is, the extent to which certain functions on common mathematical objects could be
computed. The first models of computation were models of computability, limited to
describing the properties of algorithmic processes through which a system transforms
inputs into outputs in finite time. The implementation describes exactly how to stir
a single idealised dynamical system from a start state to a final state, to obtain the
desired result. In this rather restricted sense, the meaning of a computation is a
partial function (often just N→ N). The sequential behaviour of the implementation
mattered only to control the amount of resources (typically, space and time) that the
process needed to successfully complete its task.

As the use of computers became more widespread, and with the rise of networks
and distributed computation, thinking of computers as isolated systems failed to cap-
ture the rich tapestry of behaviours that they could exhibit. Increasingly, the meaning
of a computation had to take into account the interaction of the computer with its
environment. This includes its interaction with human agents whose use of comput-
ers had changed too. In the early days of computing, users were a limited pool of
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programmers and scientists, whose role often involved waiting patiently for the result
of long calculations. As the circle of users widened, so did their use: they are now
constantly reacting and responding to the machine’s behaviour, controlling the dy-
namics of the system through designated input and output channels1. At the time of
writing of this thesis, the overwhelming majority of computations do not implement
a function in the traditional mathematical sense. This does not mean that one can-
not encode the activity of computers as functions on the natural numbers, but this
would be absurdly reductionistic and miss the intended meaning of the computation.
As Samson Abramsky asks somewhat facetiously “What function does the internet
compute?”[Abr06]. We could ask the same question of most modern computer appli-
cations, from operating systems to social-media websites. All of these examples are
not meant to terminate with a single output (if they do, it is only when they crash).
It is their interactive behaviour that is of interest.

As a result, models of computation were cut off from the safe Platonic realm
of conventional mathematical structures. Computer scientists were faced with the
challenge of integrating the way in which spatially-distributed systems communicate,
interact with each other or with their users, and share resources, all within a consistent
formalism. In this new setting, the usual notions of expressiveness, like Turing com-
pleteness, while still applicable, lost some of their relevance as an universal yardstick.
New paradigms had to be developed. If process calculi were successful in providing
versatile tools to describe complex systems from simple connectors, they were lim-
ited by the idiosyncratic choices of their syntax. Despite Robin Milner’s quest for
the λ-calculus of concurrency, no existing language can claim to have identified the
right primitives to specify and reason about the behaviour of concurrent processes.
Instead, there is an abundance of calculi, with sometimes incomparable expressive
power and no clear unifying picture. Different paradigms offer toolkits for different
purposes, while no definite theory of concurrency has prevailed. In the words of Sam-
son Abramsky, we still do not know what the fundamental structures of concurrency
are [Abr06].

This is not to say there are no grounding concepts of theoretical importance in
distributed computing: starting with the insights of Petri, the field has sought to
carve out fundamental notions, such as causality, nondeterminism, (a)synchrony and
concurrency, independently of any particular syntax. Petri nets provide an intuitive
graphical formalism in which to study the behaviour of spatially distributed systems

1The logician Jean-Yves Girard credits computer science for restoring the central place of the
first-person subject in logic [Gir06]. In this sense, computers do not compute—we do, using them.
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and processes. Petri himself described his nets as a kind of theoretical framework
for discrete physics, an idea that has been revitalised by the emerging connections
between quantum physics and computation. However, in contrast to the modular ap-
proach of process calculi, Petri nets are monolithic objects, describing closed systems
with no obvious way of integrating their interactions with an environment.

One of the guiding lines of this work is that, insofar as the behaviour of comput-
ers can only be understood in reference to how they interact with an environment,
they have to be treated as open systems. Here, the environment denotes any exter-
nal system whose behaviour is uncontrolled, whether it is a human agent or other
computers, inside a network. Correspondingly, mathematical models of computation
cannot fully isolate the system whose behaviour they attempt to describe. This goes
against the very successful tradition in the natural sciences of modelling physical sys-
tems in isolation. If this approach has proved unreasonably effective, especially in
physics, it seems that the rise of information technology has required us to develop
mathematical formalisms to analyse the dynamic behaviour of open and intercon-
nected systems. Computer science is not the only field forcing a paradigm shift—to
some extent, biology and the social sciences require a similar change of tools and
perspective.

An approach to open systems that has been particularly influential in concurrency
theory is that best summarised by Robin Milner’s words: “The meaning of a program
should reflect its history of access to resources that are not local to it” [Mil75]. Re-
sources have always played a central role in distributed systems. Processes running
concurrently may share access to resources such as network bandwidth, memory or
processor cycles. The importance of coordinating mechanisms was recognised as
early as the 1960s and 1970s in the work of Dijkstra, Hoare, Lamport and many oth-
ers [Dij68, Hoa72, Lam74]. But the notion of resource remained informal, dictated
by the practical concerns of particular applications. Later, formalisms like separation
logic [Rey02] and the logic of bunched implications [OP99] recognised the founda-
tional role of resource management in concurrent programming and built axiomatic
frameworks around it to reason about concurrent processes that manipulate shared
state. They were not the first resource-conscious logics. The pioneering work of Gi-
rard on linear logic [Gir87] paved the way for the development and application of
substructural logic in computer science. In this case, substructural means that the
usual structural rules of contraction, weakening and exchange are either missing or,
at least, controlled more closely than in classical or intuitionistic logic.
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For sequential computation, category theory provides a powerful unifying frame-
work. One of the fundamental links between theoretical computer science and cat-
egory theory is the Curry-Howard-Lambek isomorphism. Informally, it establishes
a tight correspondence between natural deduction proofs, programs or terms in the
simply-typed λ-calculus, and morphisms in Cartesian closed categories. However
the correspondence does not extend to the concurrent setting. From the syntactic
side—as we claimed above—the λ-calculus, which is based on sequential function
composition, is ill-equipped to deal with concurrency. One of the reasons is that
it is not resource-sensitive. In logical terms, intuitionistic logic allows for unlimited
use of contraction and weakening; in categorical terms, Cartesian closed categories
come equipped with a natural comonoid (i.e., copying) structure on each object.
Some researchers have argued that the simpler setting of monoidal categories, with
resource-conscious sequential and parallel composition as primitive operations, are
better suited to represent concurrent phenomena [AGN96, KSW97b]. We also start
from the premise that monoidal categories have something to say about concurrency
and that, conversely, we need to abandon Cartesian assumptions to study concurrent
phenomena.

Morphisms in monoidal categories can be depicted as string diagrams, a two-
dimensional syntax that takes into account the intrinsic spatial structure of dis-
tributed systems, highlighting physical features such as connectivity and resource-
sharing. This makes them a convenient framework in which to explore mathe-
matical models of open systems, resting on firm algebraic foundations. A grow-
ing body of work exploits these appealing features to reason about—to cite a few
examples—coordination in distributed systems [BLM06], networks of communicat-
ing automata [ASW09], the synthesis and verification of electronic circuits [Ghi13],
the behaviour of (passive linear) electric circuits [BF15], equilibrium in open Markov
processes [BFP16], stochastic reaction networks [BP17], quantum computation and
foundations [CK17], and even distributional models of meaning in linguistics [CSC10].
Sometimes, pre-existing diagrammatic formalisms have been profitably revisited from
this point of view, like Petri nets and signal flow graphs [Sha42], to mention two ex-
amples that will feature prominently in this thesis.

One of the advantages of specifying and verifying properties of distributed systems
in the language of (monoidal) category theory is that we are able to do so composition-
ally: that is, deriving properties of systems by combining those of simpler sub-systems
using sequential and parallel composition. This is know as the principle of composi-
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tionality. All of the cited works rely heavily on this principle and it will constitute
one of the pillars of our methodology.

Another cornerstone of our work is the emphasis on axiomatic or structural meth-
ods. We take this to mean that, whenever possible, we prefer to understand systems
not just through their interpretation in a semantic universe, but by identifying the
fundamental laws that regulate their interaction. Concretely, we work with presenta-
tions of symmetric monoidal categories by generators and equations. This is a form
of structuralism, focusing on the relationships between systems and the interactive
behaviour of concurrent processes rather than some extrinsic notion of functional
form. This relative viewpoint fits well with category theory, for which the study of
mathematical objects is never done in a vacuum, but through their relations with
other similar objects.

1.2 From concurrent to linear systems and back

Our work stands at the intersection of several strands of research, ranging from con-
currency to control theory. What follows is an attempt to situate it within the existing
literature.

To find some middle ground between Petri’s syntax-free approach to concurrency
and the versatility of process calculi, some research has been done towards an alge-
braic study of Petri nets that treats them as open systems. Notable proposals in-
clude [Maz87, NPS95, BCEH05, Rei09]. However, the concrete starting point of this
thesis is the work of Bruni et al. [BMM11, SMMB13] on connector algebras of nets.
This work follows the investigation of the algebra of stateless connectors in [BLM06]
and extends it to the stateful case of Condition/Event and Place/Transition nets.
The result is a symmetric monoidal category (a product and permutations category
or prop, in fact) of Petri nets with boundaries, which can synchronise with their en-
vironment through designated open transitions. Their operational semantics defines
a functor into a sub-category of spans of graphs [KSW97b], more specifically a prop
of two-sided labelled transition systems with labels for the left and right boundaries.

While efforts were made to characterise the equational theory corresponding to
the semantics of Petri nets with boundaries [Sob13], the problem remained open.
In the meantime, similar techniques were successfully applied to the field of control
theory. One of the central objects of study in control theory are linear time-invariant
dynamical systems, i.e., systems whose possible behaviours span a linear subspace
of a vector space. The theory of interacting Hopf (IH) algebras [Zan15, BSZ17],
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gives a sound and complete axiomatisation of the prop of linear relations over a field,
capturing all of these behaviours into a convincing graphical syntax, generated by the
following basic connectors:

| | | | | | | (1.1)

For fields of fractions of polynomial rings, the diagrams are signal flow graphs, inter-
preted as linear relations over streams. First introduced by Claude Shannon [Sha42],
signal flow graphs are a fundamental combinatorial model in control theory, used to
represent variable coupling between different parts of cyber-physical systems. It was
shown that signal flow graphs faithfully embed into the graphical calculus of IH over
K〈〈x〉〉, with the indeterminate x having the operational semantics of a register
that stores a value for a single clock-tick, before releasing it into the circuit: compu-
tation happens synchronously and at a given time-step, if x holds value v and
receives v′ as input, it releases v as output and stores v′. Within this calculus, all the
usual questions of control theory (and more) can be formulated, such as whether a
given specification is physically realisable [BSZ15], whether a given system is control-
lable [FSR16], whether two systems describe the same behaviour [BSZ14] or whether
one is a refinement of the other [BHPS17].

Motivated by the preliminary work of [Sob13], we aim to capitalise on the insights
and success of graphical linear algebra in control theory to tackle the problem of
characterising the equational theory of nets with boundaries. The graphical nature
of Petri nets suggests that there are commonalities. In fact, a striking feature of
our approach to concurrency is that we use the same generators as those of IH. Only
their interpretation changes: we are interested in relations with values in the semiring
N of natural numbers, instead of taking values in a field. This is a significant if
subtle change, with profound consequences for the corresponding equational theory.
Consider the following two examples:

d1 := d2 :=
x

(1.2)

As diagrams of IH over, say, the real numbers, these two examples are both equal to
linear systems whose behaviour is the total relation , i.e., the entire space.

The key idea is that, when interpreted as carrying values in N, the same two
diagrams have a completely different and more interesting operational behaviour.
The first diagram denotes the order on the natural numbers and the second one
represents represents precisely the behaviour of a place in a Petri net!
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We think of this change of model as moving from values that represent continuous
signals to values that represent discrete resources. The connection with Petri nets
also invites us to think of these resources as tokens. We chose the term “resource”
to reflect the fact that, without additive inverses, we cannot borrow arbitrary values.
Indeed, for values in a ring, a given system can access an unlimited quantity by simply
spending the corresponding negative quantity. In a non-negative semiring like that
of the natural numbers, one can only use resources that one already has. We will
focus on the semantics of concurrent computation, but this calculus could plausibly
be used for any kind of system with access to resources that are intrinsically non-
negative, such as money, goods, items in data structures like stacks or queues, species
populations in biology, concentrations in chemistry and more.

The resource-sensitive counterpart of linear relations are additive relations, (finitely-
generated) sub-monoids of Nk × Nl. Additive structures are not new in concurrency.
The reader already familiar with Petri nets will know that computations of nets are
additive: if we can go from marking m1 to marking m′1 through transitions t1, and
from marking m2 to marking m′2 through transitions t2, then it is always possible to
reach marking m′1 + m′2 from m1 + m2 through transitions t1 + t2. Model-checking
algorithms for Petri nets often exploit, at least implicitly, the additive structure of
computations [LS15]. The central claim of this thesis is that additive relations consti-
tute a fundamental semantic structure of concurrent computation, particularly well
suited to model coordinated access to limited resources.

The first main contribution of this thesis is a characterisation of the equational
theory of the prop of additive relations, AddRel. Like IH for linear relations, we give
a presentation by generators and equations of AddRel called the resource calculus.
This presentation shares many features with IH but, despite the presence of similar
algebraic structures, their building blocks interact differently, giving insights into the
differences between concurrent and linear systems.

While the resource calculus can express basic forms of synchronisation and non-
determinism, there are many non-additive phenomena in concurrency for which it is
not sufficiently expressive. One notable example is that of mutual exclusion: when
two or more processes are prevented from accessing a shared resource at the same
time. This is paradigmatic example of concurrency control pattern. To be able to
account for mutual exclusion and more general patterns of inhibitory synchronisation,
we extend the resource calculus with an affine generator , whose meaning is the
constant resource one. Again, the extended calculus has a linear counterpart—affine
subspaces of vector spaces—but, in the additive world, the category of behaviours
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corresponds to that of polyhedral relations. The name stems from a geometric per-
spective: additive relations are like discrete cones while polyhedral relations can be
seen as discrete polyhedra. We extend the equational theory of the resource calculus
and obtain a full completeness result, proving that the affine resource calculus gives
a presentation of the prop of polyhedral relations.

Finally, we need to clarify what additive relations and the resource calculus have
to do with Petri nets and how we can tackle the problem we set out to solve. To do
so, we introduce a stateful variant of the resource calculus and derive a presentation
for it. The presentation is a very simple extension with a single additional generator

x and no equations. The corresponding category of behaviours is a prop of
additive labelled transition systems within which we show that those corresponding
to the operational semantics of Petri nets can all be expressed. The translation
of a Petri net into the stateful resource calculus gives a satisfying solution to the
problem of finding an axiomatisation for the nets with boundaries of [SMMB13].
Our microscopic analysis reveals that places in Petri nets (with boundaries) can be
decomposed as stateful asynchronous buffers, as in the second diagram of (1.2). The
prop of additive relations, axiomatised by the resource calculus, provides the algebra
of stateless transitions. If the algebraic structures underpinning Petri nets motivated
the development of the resource calculus, the latter is strictly more expressive than
Petri nets, which constitute just one possible application of the language we develop
in this thesis. Our hope is that the resource calculus will constitute a foundational
assembly language for concurrency, into which various paradigms can be compiled
and compared.

Of course we do not claim to have conclusively answered Samson Abramsky’s
question about the fundamental structures of concurrency. First of all, the stateful
resource calculus models a very fine notion of process equivalence that is too inten-
sional for most practical purposes. But even if behavioural equivalences, like trace
equivalence and (weak or strong) bisimilarity [vG90] are often undecidable, we believe
that the resource calculus provides a solid algebraic framework within which many of
these notions can be investigated. Similarly, we do not examine fundamental concepts
such as causality, conflict or mobility in this thesis but we do not see any immediate
obstacle to studying them within this theoretical framework.

We have made an effort to present the content of this thesis as a unified narrative.
Scientific research, however, is not linear and the narrative we present has the sort
of consistency that only hindsight can afford. Indeed, in the meandering journey of
his graduate studies, the author has contracted an intellectual debt to a much wider
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community than the story suggests. First, our emphasis on axiomatic approaches
to open systems owes a lot, not just to the work on interacting Hopf algebras, but
also to the related work on categorical quantum mechanics, where a lot of the same
algebraic structures appear. In fact, the ZX calculus [CD08], a complete [Bac14,
NW17] axiomatisation of the prop of finite-dimensional Hilbert spaces (over powers of
two, to model qubit computations) and linear maps, is uncannily similar to IH. From
a different but related body of work, the applications of hypergraph categories and of
the decorated cospans construction [Fon16] to networks of open systems drawn from
a broad range of scientific domains [BF15, BFP16, BP17] has also been an important
source of inspiration.

1.3 Roadmap and original contributions

We outline here the overall flow of arguments and the main original contributions of
each chapter.

In the second chapter, we give an overview of the basic theory of monoidal cat-
egories with an emphasis on the graphical calculus of string diagrams. There are
no new results here even if the presentation itself may be new to some: we take a
systems-first approach and take special care to show how the algebraic structure of
diagrams (and their category-theoretic counterparts) are meaningful operations on
distributed systems. We also introduce props and their presentations, the monoidal
equivalent of Lawvere theories on which we will rely extensively in subsequent chap-
ters. Finally, we outline briefly the theory of interacting Hopf algebras, the axiomatic
approach to the theory of linear dynamical systems, which provides a reference point
with much of the same primitives as in our work.

The third chapter is the technical heart of this work. It introduces the prop
of additive relations and a sound and complete calculus for it, called the resource
calculus. There are several original contributions in this chapter:

• To the best of our knowledge, this is the first time that the definition of the prop
AddRel of additive relations, Definition 49, makes its way into print. The defini-
tion of additive relation itself was suggested to the author by Pawe l Sobociński.
The proof that they form a prop, in Proposition 51, is based on a similar proof
for a different prop introduced in [Sob13], but appears here in detail for the first
time.
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• The definition of the resource calculus, the equational theory of additive rela-
tions in Definition 54 is an original contribution. Its full completeness, Theorem
59, is entirely new and is one of the most significant results of this thesis.

• All the results of Section 3.7 are, as far as we know, original contributions.
We identify a subprop of AddRel that is the Kleisli category of the composite
of the powerset and multiset monads and we give a complete calculus for it.
This might be of independent interest to logicians studying linear logic as this
prop is the dual of a well-known simple model of its Multiplicative Exponential
fragment.

In the fourth chapter, we show how to extend the resource calculus to deal with
affine phenomena, in order to model more complex behaviour in distributed systems,
such as mutual exclusion. To do so, we introduce a simple and elegant technique to
axiomatise affine theories from linear ones.

• We first show how to deal with affine transformations in the general case of
a cancellative semiring. Presenting affine maps as the coKleisli category of a
comonad, and the age-old homogenisation method as an adjunction, are simple
but new results that some may find of independent interest. Theorem 112
provides a sound and complete calculus for the prop of affine maps.

• Next we show that we can extend the same method to the prop PolyRel of
polyhedral relations. As far as we know, the notion of polyhedral relation
appears in this thesis for the first time, and so does the observation that they
form a prop. These can be found in Definition 118 and Proposition 119.

• As for additive relations, we characterise precisely the equational theory of
PolyRel with the affine resource calculus, introduced in Definition 120. It is
shown to be sound and complete in Theorem 124.

• Finally, we apply the results of the previous sections to embed the calculus
of stateless connectors, a coordination language introduced in [BLM06], into
the resource calculus. This embedding was suggested to the author by Filippo
Bonchi and is in some sense immediate. Nonetheless it is an important case
study that justifies our approach to concurrency.

• The same section contains an intriguing new result that may be interesting to re-
searchers in categorical quantum mechanics, for whom the symmetric monoidal
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category of relations (and certain subcategories thereof) is an important toy
(non-)model. It turns out that polyhedral relations also include all relations
between finite sets and that the affine resource calculus provides a complete
graphical calculus for fRel. This is the content of Theorem 131.

The last chapter explores extensions of the resource calculus to model stateful
systems and formalises the link with Petri nets.

• We formalise a well-known construction that builds a prop St(T) of state-passing
systems from any prop T in a natural way. This idea is commonplace in com-
puter science, but we do not know of any paper that formalises the construction
on arbitrary props.

• We show in Theorem 138 that, if T is compact closed, then St(T) is isomorphic to
the coproduct of T with the prop freely-generated by a single 1→ 1 generator
and no equations. This is a simple yet elegant result which the author was
surprised not to find explicitly stated anywhere in the literature.

• It follows from Theorem 138 that, given an axiomatisation of T, we can imme-
diately derive one for its stateful extension. We apply this idea to the resource
calculus to define its stateful extension and show that it is isomorphic to a
category of additive labelled transition systems.

• Equipped with the preceding results, we turn to another case study: we show
in Proposition 147 that Petri nets can be faithfully encoded into the stateful
resource calculus and that the embedding preserves their operational semantics.

• We also show that the stateful resource calculus is strictly more expressive than
Petri nets in Corollary 149.

• In Section 5.2.2 we examine different notions of state with different semantics
from the usual operational behaviour of Petri nets and show that they all fit
uniformly within the stateful resource calculus.

• In Section 5.2.3 we turn to Petri nets with boundaries, as defined in [BMM11,
SMMB13] and show that they are also captured within our framework.

• Next, we try to explain why the encoding of Petri nets works for additive re-
lations but fails for linear relations. A preliminary result in this direction is
the existence of a traced embedding of relations between finite sets (with the
disjoint sum as monoidal product) into AddRel, Theorem 162.
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1.4 Prerequisites

Throughout this thesis, we will assume familiarity with basic category theory, not
only the definitions of category, functor and natural transformation, but also, more
broadly, a rudimentary understanding of universal properties, of common (co)limits
such as (co)products, pullbacks and pushouts or (co)equalisers, and of adjunctions
and monads. The reference on these topics is still [ML13] but the author has also
found [Lei14] to be a useful introductory account.
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Chapter 2

Background

2.1 Open systems as diagrams

This section gives an overview of the diagrammatic approach to the study of open
systems—a field that has recently risen to prominence in a variety of scientific con-
texts [Ghi13, BF15, BFP16, BP17, CK17, CSC10]. We will favour diagrams over
symbolic notations, not only to avoid unnecessary bureaucratic overhead, but also to
highlight the spatially distributed nature of the systems we want to model. We will
nonetheless recall the relevant category-theoretic notions systematically, to connect—
at least in this preliminary chapter—the diagrammatic notation with standard math-
ematical practice. For a more comprehensive introduction to string diagrams, we
recommend Selinger’s survey [Sel11].

We will denote as system anything with a number (including zero) of ports, con-
nection points or terminals through which it can interact with its environment, for
instance, by sharing resources like energy or information. Although we have dis-
tributed models of computation in mind, we use the word “system” in a very liberal
way, without referring to any specific domain of application or level of abstraction.
These systems could refer to software services communicating over a network, hard-
ware components running in parallel and potentially accessing shared memory, or
even abstract models of computation, like automata and state-machines of various
kinds with communicating capabilities. They could also be physical systems, interact-
ing at a microscopic level of granularity according to the laws of quantum mechanics,
or macroscopic systems that can freely exchange energy in the form of heat. They
could also be biological systems interacting as part of complex chemical cycles, or
even cooperating/competing social agents and institutions.

Because our syntax is two-dimensional, it is useful to partition the connection
points of a given system into a left and right interface. We should not think of these

13



as inputs or outputs, but simply as an artefact of how we compose diagrams in the
plane. The distinction between right and left ports is useful in practice to describe
how to connect various systems to form more complex ones, by assembling them
horizontally and vertically, like two-dimensional Lego bricks. The open ports are
labelled by types in order to specify to which other ports they can be connected. For
example, consider a system with two ports on the left and one on the right that can
exchange discrete resources (modelled by N) with its environment. It can be depicted
as the following box with labelled wires:

a
N
N

N (2.1)

Suppose that it constrains the observable value at its right boundary to be equal
to the sum of the values observed on the two leftmost ports. It seems legitimate
to interpret the system a as a functional process, which takes two natural numbers
as inputs and outputs their sum. But we could have also considered a system with
the converse set of constraints between the observable values at its boundary, b =
{(p, (n,m)) | n,m, p ∈ N and p = n+m}, represented as

b
N
N

N (2.2)

Is it better to think of b as a running backwards or as a process that takes a quantity of
resources as input and splits it into two? In this case, which ports are inputs and which
are outputs? In traditional approaches to computation, inputs capture the causal
effect of the environment on a system, and outputs the converse. A computation
effectively transforms inputs into outputs. Processes can be chained sequentially,
feeding the output of one system as input to another. We may even allow feedback to
connect some outputs to inputs of the same process, but this fundamental distinction
still underpins most models.

By contrast, in our approach, we make no assumptions about the inherent direc-
tionality of causal flow between the different parts of the systems that our diagrams
describe. Systems are better thought of as constraining the interactions with the envi-
ronment at their connection points, independently of any a priori distinction between
inputs and outputs. These notions still have a place in our framework, but they are
emergent properties of how different parts of a system interact.

This position is not new and we do not claim that it is our own. Control theorist
Jan Willems is perhaps one of the first to have articulated these principles and warned
against the use of inputs and outputs as primitive notions when modelling physical
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systems [Wil07]. He contends that physical laws are not intrinsically directed, but
merely express a relation between the observable variables of a system:

“For example, the gas law states how the variables of interest, temper-
ature, volume, and mass are related. This law does not, however, state
that some of the variables generate the others. The interconnection of
two physical devices means that certain variables associated with the first
device are set equal to certain variables associated with the second device.
Connecting two pipes of two hydraulic systems means that the pressure
and flow in the first pipe at the interconnection point are set equal to the
pressure and flow in the second pipe at the interconnection point. After
interconnection, the two hydraulic systems share the pressure and flow
variables.”

This perspective gave rise to the behavioural approach to dynamical systems in
control theory. Models of (concurrent) computation are the abstract representation
of a physical system from which we wish to generate a certain behaviour and we claim
that the same principles can be fruitfully applied to them. To effectively compute,
we need to ensure the existence of a mapping of the model onto physical reality,
and one that is impervious to irrelevant perturbations. This mapping should also be
compositional, in the sense that the behaviour of the whole system can be derived
from the behaviour of its parts and how they are interconnected.

This is not to say that inputs and outputs have no place in models of computation.
After all, when a user presses the return key to launch a program, there is a direct
causal effect. It is not the machine launching a program that causes the user to press
the key. Certain systems have an irreducible a priori directionality. For example, we
will see later that places in a Petri net have input and output ports that direct the
flow of tokens in the net. Willems’ behavioural approach encourages us to be careful
about not introducing causal relationships where they can be avoided, in order to
identify genuine inputs and outputs.

2.1.1 Parallel and synchronising composition

In the behavioural approach, the composition of physical systems does not corre-
spond to the chaining of the output signal of one process to the input of another,
but is understood more simply in terms of synchronisation or variable coupling. This
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paradigm shift is the inevitable consequence of the absence of any inherent direc-
tionality between the ports of the systems we consider. If we have access to the two
systems below

cA
A

B D

C
dC

C
E (2.3)

we can connect them to obtain

d
c

A

C

D
B

E

A (2.4)

In what follows, we are interested in distributed systems and networks of interacting
components, which can coexist in parallel, without necessarily communicating. We
represent the resulting joint system as the vertical juxtaposition of the two:

d

c

E

C
C

D
A
CA

B

(2.5)

Note that, contrary to the operation of interconnection, parallel composition is not
typed, and two systems can always be joined into a larger one in which they do not
interact.

From these two primitive operations, we can obtain complex networks of systems
interacting in various ways, whose only relevant structure is their connectivity.

2.1.1.1 Monoidal categories

We now reveal that the diagrams that we use to represent systems are morphisms
of monoidal categories. We will see that our diagrams are in fact morphisms in
highly-structured monoidal categories, unveiling the additional algebraic structure
progressively in the following sections.

Category theory provides a general mathematical framework to study systems and
processes with a primitive typed operation of composition. Monoidal categories are a
convenient abstraction to model the interaction between the usual typed composition
and an untyped form of composition, called monoidal product. To guarantee that
they behave as the diagrams suggest, we need the axioms in the following definition
(and more, as we will see later).

Definition 1. A monoidal category is a category equipped with

(a) a monoidal product functor ⊗ : C× C→ C
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(b) that is associative, i.e for all objects A, B and C, we have a natural isomorphism
αA,B,C : A⊗ (B ⊗ C)→ (A⊗B)⊗ C, called the associator; and

(c) such that there exists a distinguished object I, called the monoidal unit, with
two natural isomorphisms ρA : A⊗ I → A and λA : I ⊗ A→ A, for all objects
A, called the unitors;

(d) subject to the following coherence conditions (see [ML13]):

(A⊗ I)⊗B A⊗ (I ⊗B)

A⊗B

αA,I,B

ρA ⊗ 1B 1A ⊗ λB

((A⊗B)⊗ C)⊗D

(A⊗ (B ⊗ C))⊗D (A⊗B)⊗ (C ⊗D)

A⊗ ((B ⊗ C)⊗D) A⊗ (B ⊗ (C ⊗D))

αA,B,C ⊗ 1D α(A⊗B),C,D

αA,(B⊗C),D αA,B,(C⊗D)

1A ⊗ αB,C,D

These two axioms are sufficient to prove that any two morphisms with the same
domain and codomain, built up from the identities, associators and unitors, are equal.
As a result there is a unique structural morphism between any two ways of bracketing
the same list of objects, such as A⊗ (B ⊗C) or (A⊗B)⊗C. This is the content of
MacLane’s coherence theorem [ML13, Theorem VII.2.1].

Remark 2 (Notational convention). To match more closely the diagrammatic rep-
resentation of morphisms in monoidal categories, we will usually write f ; g for the
composition of f : A→ B followed by g : B → C.

Less often, we will adopt the more common symbolic order, denoting it by simply
concatenating the two morphisms, as in gf . We will need this when applying certain
morphisms to arguments, as in gf(x), or when multiplying matrices.

Example 3. Perhaps one of the simplest examples of monoidal category is Set, the
category of sets and functions, with the Cartesian product as monoidal product, and
the singleton set as monoidal unit. In fact, any category with finite products is
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monoidal, with the categorical product as monoidal product. These categories are
often called Cartesian monoidal and the terminal object is always the unit. Dually,
a category with finite coproducts is also monoidal and has the initial object as unit.
Such categories are called coCartesian monoidal.

Example 4. Let Rel be the category with

• sets X, Y, . . . as objects;

• binary relations r ⊆ X × Y as morphisms X → Y ;

• composition given by

r ; s =
{

(x, z) | ∃y ∈ Y, (x, y) ∈ r and (y, z) ∈ s
}

;

for relations r : X → Y and s : Y → Z;

• 1X = {(x, x) |x ∈ X} as identity for X;

Rel can be given the structure of a monoidal category in at least two different ways.
The Cartesian product (which is not the categorical product in this case) given by
X × Y on objects, and by

r1 × r2 =
{

((x1, x2), (y1, y2)) | (x1, y1) ∈ r1 and (x2, y2) ∈ r2
}

for relations ri : Xi → Yi (i = 1, 2), is a monoidal product whose unit is the singleton
set 1 = {•}, associator is αX,Y,Z =

{(
((x, y), z), (x, (y, z))

)}
and (left-)unitor λX =

{(x, (•, x))}. We will refer to this monoidal category as Rel×.
In addition, the disjoint sum of sets is a biproduct for Rel. We will occasionally be

interested in this other monoidal product and will refer to the corresponding monoidal
category as Rel+.

Most of the categories that we will consider in the next chapters are monoidal
subcategories of Rel× and inherit additional algebraic structure from it, each corre-
sponding to intuitive diagrammatic operations on systems: most notably, a symmetry,
a form of feedback and the ability to copy and discard parts of systems. We inves-
tigate these notions in their full generality in Sections 2.1.2.1, 2.1.2.2 and 2.1.2.3,
respectively.
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2.1.1.2 Monoidal functors and natural transformations

Diagrams represent morphisms in arbitrary monoidal categories. In what follows we
will consider specific systems and define their behaviour in reference to a given model.
For this we will need to map diagrams functorially to a corresponding monoidal
category that constitutes our semantic universe. But functors are too flexible, as they
may not preserve the monoidal product. This is why we define the relevant notion of
structure-preserving functor between monoidal categories and natural transformation
between such functors.

Definition 5. A monoidal functor is a functor F : C → D between two monoidal
categories (C,♥) and (D,♠) such that

(a) there exists a natural transformation φA,B : F (A)♠F (B)→ F (A♥B)

(b) and a morphism φI : ID → FIC,

satisfying the following commutativity conditions for all objects A, B and C of C:

(FA♠FB)♠FC FA♠(FB♥FC) FA♠F (B♥C)

F (A⊗B)♠FC F ((A♥B)♥C) F (A♥(B♥C))

φA,B♠1FC

1FA♠φB,C

φA♥B,C

φA,B♥C

and

FA♠ID FA♠FIC ID♠FB FIC♠FB

FA F (A♥IC) FB F (IC♥B)

FA♠φI

φA,IC

φI♠FB

φIC,B

where the unlabelled morphisms are the only sensible associators or unitors in the
monoidal categories C and D.

We say that a functor is strong monoidal if the components of φ are all invertible.
If they are identities, the functor is strict monoidal. There is also a notion of oplax
monoidal functor with φA,B : F (A♥B) → F (A)♠F (B) and φI : FIC → ID, with
the associativity and unitality coherence conditions pointing in the other direction as
well.
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Definition 6. A monoidal natural transformation between two monoidal functors
( : F, φ) and (G,ψ) is a natural transformation θ : F → G such that

FIC GC

ID

φI ψI

θI

and

FA♠FB GA♠GB

F (A♥B) G(A♥B)

φA,B

θA♠θB

θA♥B

ψA,B

commute for all objects A and B.

Definition 7. Two monoidal categories C and D are monoidally equivalent when
there exist strong monoidal functors F : C→ D and G : D→ C with monoidal natural
isomorphisms FG → 1D and 1C → GF (note that 1C and 1D are clearly strict and
therefore strong monoidal functors).

2.1.1.3 Strictness or why the graphical calculus works

If its associators and unitors are all equalities, a monoidal category is said to be
strict monoidal. In this thesis, most of the categories that we study are strict. But
even when they are not, we can always find a monoidally equivalent strict monoidal
category—this is another interpretation of the coherence result of MacLane. Conse-
quently, we can write A⊗B ⊗ C without ambiguity and safely ignore the associator
isomorphisms. Similarly, we will always omit ρ and λ by identifying A with either
A⊗ I or I ⊗ A.

The coherence theorem has another important consequence for our purposes: it
justifies the correspondence between morphisms in a monoidal category and the dia-
grammatic representation of systems. In the graphical calculus of monoidal categories,
a morphism f : A1⊗· · ·⊗Ak → B1⊗· · ·⊗Bl is depicted as a box with labelled wires
or ports:

f
A1

Ak

B1

Bl

(2.6)

Note that—justified by the coherence theorem—this representation does not distin-
guish between different bracketings of the domain and codomain. The identity on an
object A, is depicted as a single labelled wire, and the identity on A⊗B⊗C as three
parallel wires:

A A B B
AA

CC

(2.7)

20



The monoidal unit is omitted from diagrams so that morphisms of type s : I → A

(often called states) and e : A → I (often called effects) are represented respectively
by

s A and eA (2.8)

and the the identity on I is simply the empty diagram:

idI = (2.9)

As expected, the composition f ; g of morphisms f : A→ B and g : B → C is repre-
sented by connecting the intermediate matching wires:

fA
B

g C (2.10)

and the monoidal product of f1 : A1 → B1 and f2 : A2 → B2 is depicted as the vertical
juxtaposition of the corresponding diagrams:

f1A1 B1

f2A2 B2

(2.11)

The graphical calculus of monoidal categories comes with an intuitive and mathe-
matically rigorous notion of topological equivalence. For example, the following two
diagrams are equal:

g

h

f

s
e

=
g

h

f

s

e
(2.12)

The diagram on the left above can be decomposed as

g

h

f

s
e

(2.13)

or, in purely symbolic notation,

(s⊗ id⊗ f ⊗ id) ; (id⊗ g ⊗ id⊗ h) ; (e⊗ id⊗ id) (2.14)
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The reader will easily see from this last expression why we prefer to use the dia-
grammatic notation. The first advantage is that the wiring makes the type explicit
while it does not appear in the symbolic formula in (2.14). But more importantly,
the diagrammatic syntax turns simple topological deformations into theorems. The
defining equations of strict monoidal categories are diagrammatic tautologies (where
we omit object labels for clarity):

• Associativity and unitality of composition:

f g h = f hg (2.15)

f = f = f (2.16)

• Associativity and unitality of the monoidal product:

f1

f2

f3

=

f1

f2

f3

(2.17)

f
= f =

f
(2.18)

• Functoriality of the monoidal product, also known as the interchange law:

f1 g1

g2f2

=
f1 g1

g2f2

(2.19)

Finally, we emphasise that the graphical calculus is not just a convenient visual
representation, but a rigorous way to derive equalities of morphisms in monoidal cat-
egories: it is sound and complete for the axioms of monoidal categories by a result
of Joyal and Street [JS91]. We will not discuss the precise definition of which topo-
logical deformations are allowed between morphisms of monoidal categories, trusting
that our intuition is sound. For our purpose, it is sufficient to say that the allowed
deformations are precisely those obtained by applying locally any sequence of the
graphical rules above. Formally, diagrams are equivalence classes of two-dimensional
terms, modulo the axioms of monoidal categories. Graph rewriting for string diagrams
is a subject of active research [BGK+16, BGK+18].
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2.1.2 Only the connectivity matters

Only the connectivity of systems matters: we do not wish to keep track of where the
diagrams are located on the page on which we depict them, but only of which ports
are connected to each other. For many purposes, this is a considerable abstraction
step. When designing integrated circuits for example, latency, power consumption
and heat generation place constraints on the spatial distribution of components. In
this thesis however, we will not be concerned with the physical implementation of
systems. This is a choice, and we do not wish to minimise the practical importance
of these concerns. Our purpose is principally theoretical and therefore it is simpler to
model systems as abstract representations of physical processes, whose dynamics are
coarse-grained into (mostly discrete) states and events, independent of their precise
spatial location. Spatial structure still matters, insofar as systems are distributed and
connected to each other with a certain topology.

Interestingly, this abstraction step allows us to draw more general and permissive
kinds of diagrams, yet imposes more algebraic structure on their category-theoretic
counterpart.

2.1.2.1 Symmetry

The first consequence of the insensitivity to spatial distribution is that we should be
able to braid wires in order to connect systems in scenarios like this:

g

hf

s e

(2.20)

Furthermore, we do not want to keep track of which wires are going below or above
so that the braiding should be self-inverse:

A
B

A
B

= A

B

A

B
(2.21)

At the category-theoretic level, this leads to the definition of symmetric monoidal
categories, smc for short. The graphical calculus of smc is that of plain monoidal
categories along with the braiding and corresponding axioms. Again, in terms of
diagrams, these axioms are either self-evident tautologies or simple deformations.
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Definition 8. A symmetric monoidal category is a monoidal category with a natural
isomorphism B

A : A ⊗ B → B ⊗ A that is self-inverse and compatible with the
monoidal product, in the sense that

A
B
C

B
C
A

= A
B ⊗ C

B ⊗ C
A

These coherence equations allow us to deduce that the diagram in (2.20) is equal
to

g

h
f

s
e

=
g

h
f

s
e

(2.22)

using simple deformations of the wires.

Example 9. The monoidal category Rel× is symmetric monoidal with braiding given
by

Y
X := {((x, y), (y, x)) | x ∈ X and y ∈ Y } (2.23)

for the sets X and Y .

Unsurprisingly, we require that structure-preserving functors between smc respect
the braiding.

Definition 10. A symmetric monoidal functor is a monoidal functor (F, φ) for which

FA♠FB F (A♥B)

FB♠FA F (B♥A)

FB
FA

φA,B

φB,A

F ( B
A)

commutes (note that if F is stict, the condition is trivial).

Like for monoidal categories, there is a coherence theorem for smc [ML13, Theorem
XI.3.1] that guarantees the soundness and completeness of the graphical calculus.
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2.1.2.2 Bending wires with cups and caps

We emphasised at the beginning of this chapter that our representation of systems
does not intrinsically distinguish inputs from outputs. And, since it should also be
insensitive to the spatial location of systems, there are no constraints preventing us
from connecting any two ports, provided that their types match. Unfortunately, the
rules of smc do not allow for this generality. Morphisms in every category come
equipped with an inherent distinction between domain and codomain. For us, this is
a syntactic distinction, providing a convenient language to describe how to connect
systems together when drawing them in two-dimensions. However, smc take this
distinction more seriously than we would like: every diagram representing a morphism
in a smc admits an implicit causal structure, given by a directed acyclic graph, flowing
from left to right. It is therefore always possible to assign a consistent direction to
the wires of a diagram, for example:

g

h
f

s
e

(2.24)

Conversely, one can show that a diagram can be interpreted in a smc precisely when
the directed graph, whose nodes are the boxes and edges are the wires (with the
direction going from left to right), is acyclic [CK15]. We will not make these state-
ments more rigorous nor prove them here but the reader can convince themselves by
noticing that morphisms in a smc are built by composing layers of monoidal products
of morphisms, from left to right.

At first, it seems like the category-theoretic counterpart of general diagrams should
be some generalisation of smc that forgets the directionality of morphisms. But, as
with the braiding, we can obtain the desired algebraic structure by giving ourselves
new distinguished morphisms satisfying equations that reflect the topological proper-
ties of diagrams. The reader may find interesting that—once again—more permissive
diagrams correspond to more restrictive categories or categories with more sophisti-
cated structure.

The additional diagrams are depicted as 90 degree turns:

A

A and
A

A (2.25)
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for each object A, satisfying the triangle equalities—which, once more, are obvious
topological deformations:

A

A
A = A A =

A

A
A (2.26)

and

A

A =
A

A

A

A =
A

A (2.27)

In a smc, we call two morphisms satisfying these equalities, cups and caps respectively.

Definition 11. A self-dual compact closed category is a smc that has cups and caps
for every object.

Example 12. The smc Rel× is self-dual compact closed with cup and cap for the set
X given by

:= {(•, (x, x)) | x ∈ X} and := {((x, x), •) | x ∈ X} (2.28)

Remark 13. There is a more general notion simply called a compact closed category,
for which cups and caps link an object A to its dual, denoted by A∗. In the graphical
calculus of compact closed categories, wires carry a direction represented by an arrow
and A∗ has its arrow going in the opposite direction to that A; cups and caps reverse
the direction:

(2.29)

This definition forces the dual of an object to be isomorphic to it, in any smc. In this
thesis, all of the compact closed smc that we will consider are self-dual—in the sense
that the isomorphism is an equality, A = A∗—so we will not need the extra level of
generality and will not need to label wires with arrows.

Remark 14. The reader versed in the language of higher categories may know that
monoidal categories are equivalent to 2-categories with a single 0-cell. Then, the trian-
gle equalities for cups and caps correspond to the defining equalities of an adjunction
in an arbitrary 2-category. For a given object (seen as a 1-cell in the equivalent 2-
category), its associated cup and cap are the counit and unit of this adjunction. As
a result, they determine each other uniquely and the existence of duals is a property
of a given smc, rather than a structure. Hence, when they exist, duals are unique up
to isomorphism.
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The graphical language of self-dual compact closed categories allows us to bend
wires at will, treating them as unoriented edges between the connection points of
individual subsystems:

g

h

f

s

e (2.30)

The coherence theorem for compact closed categories guarantees the soundness of
these graphical operations and can be found in [KL80], one of the first papers to
contain string diagrams.

From compacity, we can derive a form of feedback called the partial trace of a
system, by connecting two of its ports:

f

X

BA
(2.31)

As a result, every (self-dual) compact closed category is also traced monoidal, a notion
introduced in [JSV96], that we will only need in Section 5.3.1 where it will be defined.

We can also move any port from the left to the right boundary and vice-versa.
This has the following important consequence.

Proposition 15. In a self-dual compact closed category, for any two objects A and
B, there is a bijective correspondence between morphisms of the following form:

BA ⇔
B
A (2.32)

We will make extensive use of this fact when finding normal forms for morphisms
of certain self-dual compact closed categories: because of Proposition 15, it will be
enough to consider systems with ports only on one side of their boundary. By applying
this bijection once on each side, we can deduce that, in a self-dual compact closed
category C, C(A,B) ∼= C(B,A). We call the operation that realises this bijection the
transpose:

B

A

(2.33)

For a morphism d, we denote its transpose symbolically by d†. Note that, in Rel×, the
transpose computes the converse of a relation: (x, y) ∈ r iff (y, x) ∈ r†, for a relation
r : X → Y .
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2.1.2.3 Copying and discarding with the Frobenius axioms

We started with the idea that composition of systems is variable sharing, represented
as connecting two ports together. But there is no reason that we should limit ourselves
to just two. The primary source of examples of distributed systems are networks of
interacting computers. In a network, machines share channels on which they com-
municate and synchronise access to certain resources. Often these channels connect
more than two subsystems together. This is fundamental and our diagrammatic syn-
tax should reflect this capability, allowing us to draw systems like these:

g

h

f

s

e (2.34)

Similarly, a system may have ports that we wish to ignore so we want to be able to
discard parts of a system that are irrelevant in our model. Diagrammatically, this
means connecting a wire to no other port:

(2.35)

We see that diagrams are not just graphs anymore, but hypergraphs with systems
as vertices and wires as hyperedges. And, once again, by identifying the algebraic
structure we need, we will obtain the category-theoretic counterpart that captures
the richer graphical calculus.

Frobenius monoids Intuitively we need nodes with arbitrary arity, like

k l (2.36)

that compose in the obvious way:

l2

l1 −m

k2 −m

k1

m = l1 + l2 −mk1 + k2 −m (2.37)

and whose edges can be bent in arbitrary ways, in the sense that

l

m

k
= k l +m (2.38)
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It is possible to obtain an algebraic structure that satisfies these laws by giving our-
selves a finite number of morphisms subject to a finite number of simple equations
that capture the desired topological invariance. All we need are morphims that can
copy (dually, merge) and delete (dually, generate) wires:

(2.39)

satisfying the equations of extra-special commutative Frobenius monoids.

Definition 16. An extra-special commutative Frobenius monoid in a smc is an object
A together with morphisms

: A→ A⊗ A : A→ I : A⊗ A→ A : I → A

such that

(a) and form a cocommutative comonoid:

= = =
(2.40)

(b) and form a commutative monoid:

= = =

(2.41)

(c) they obey the Frobenius equations:

= = (2.42)

(d) and the separability and bone equations:

= = (2.43)

Remark 17. Originally defined in the context of representation theory [BN37], the
general definition of Frobenius monoids in smc is due to [CW87], where they first
appeared under the name commutative separable algebras. The Frobenius equa-
tions are a famous algebraic pattern bridging algebraic and topological phenomena,
see [Koc04, Lac04].
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The equations we have given contain some redundancies for the sake of symmetry.
For example, any one of the two Frobenius axioms is sufficient to prove the other.
Similarly, we only need the commutativity of the monoid to prove the cocommuta-
tivity of the comonoid, and vice-versa.

Most of the Frobenius monoids in this thesis will be commutative, separable and
satisfy the bone equation so we will simply refer to them as Frobenius monoids by
default, unless stated otherwise.

There is a coherence result for Frobenius monoids in a smc, called the spider the-
orem, guaranteeing that any two ways of connecting multiple ports together through
any number of black nodes are equal.

Theorem 18 (Spider theorem). Every morphism A⊗k → A⊗l constructed from
, , , . and the identity on A, using composition and the monoidal

product, such that the corresponding diagram is connected as a undirected graph, is
equal to

k l (2.44)

Proof. This result is an implicit corollary of the work of Lack on composing props via
distributive laws [Lac04]. It appears explicitly for the first time as the spider theorem
in [CPP08], where Frobenius algebras are used as the interface between quantum and
classical systems. A proof by a normal form argument can be found in [HV, Theorem
4.23].

Thanks to the spider theorem, we can see any composition of black comonoids
and monoids as an abstract vertex with dangling wires, whose only relevant structure
is the number of connecting points on the left and on the right. The normal form
guarantees that we can unambiguously depict any such morphism A⊗k → A⊗l as a
spider with k legs on the right and l legs on the left, which is what we wanted:

k l (2.45)

Remark 19. Given Frobenius monoid, we can define and . Notice that
these two morphisms satisfy the triangle equalities:

= = = (2.46)

The other equality can be proven similarly. Finally, the cups and caps given by the
Frobenius structure are clearly symmetric by the commutativity of the (co)monoid.
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In a self-dual compact closed category, the cups and caps of a Frobenius monoid
may or may not coincide with the existing structure. If they do not, we may not
be able to bend the legs of spiders using the compact structure of the category in
a way that is consistent with the notation. Luckily, the cups and caps in categories
of interest to us will all come from Frobenius monoids so we will not need to pay
attention to this slight annoyance.

Hypergraph categories Smc with a consistent choice of Frobenius monoid on
each object have been reinvented (or rediscovered, depending on one’s philosphical
inclination) several times independently, receiving a different name each time: well-
supported compact closed categories in [Car91] and the subsequent work of Walters
and his collaborators [RSW05], dgs-monoidal categories in [GH97], dungeon categories
in categorical quantum mechanics [Mor14], and the now more established hypergraph
categories, in [Kis14] and [Fon16]. We will adopt the latter.

Definition 20. A hypergraph category is a smc with a special commutative Frobenius
structure on each object, compatible with the monoidal product, in the sense that

A⊗B A⊗B
A⊗B

=
A

A

AB
B

B A⊗B = A
B

(2.47)

A⊗BA⊗B
A⊗B

=
A

A

A B
B

B A⊗B = A
B

(2.48)

and for which the unit is coherent1, i.e., the Frobenius structure on I is given by the
unitor isomorphism and the identity: (ρ−1

i , idI , ρi, idI).

Example 21. Our running example, Rel×, is a hypergraph category in which the
Frobenius structure on a set X is given by

:= {(x, (x, x)) | x ∈ X} := {(x, •) | x ∈ X} (2.49)

:= {((x, x), x)) | x ∈ X} := {(•, x) | x ∈ X} (2.50)

Remark 22. The definition above does not require the (co)monoid to be natural.
Morphisms in a hypergraph category may or may not be (co)monoid homomorphisms:

f =
f

f
and f = (2.51)

1This additional requirement was overlooked in much of the literature; it was introduced in [FS18].
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f

f
= f and = f (2.52)

In fact, for a given hypergraph category it is generally instructive to look at those
that do commute with the (co)monoid. For example, in Rel×, the relations that
preserve are precisely the functional relations (those that are single-valued) and
those that preserve are precisely the total relations. Therefore, the comonoid
homomorphisms are exactly the functions.

Proposition 23. Every hypergraph category is self-dual compact closed.

Proof. The cups and caps on each object are given by and . That they
satisfy the triangle equalities and are symmetric are proven in Remark 19.

2.2 Props

We give an introductory account of props for the purpose of this thesis; for a more
in-depth look, the reader is referred to [Lei04, Zan15, Lac04].

Definition 24. A product and permutations category or prop is a strict symmetric
monoidal category with the natural numbers as objects and addition as monoidal
product. A morphism of props is a strict symmetric monoidal functor that is the
identity on objects. Props form a category we call Prop.

Example 25. We give below two examples of props that will be useful later.

(a) Since every finite set is a disjoint sum of a finite number of copies of the singleton
set, the full symmetric monoidal subcategory of Rel+ on finite sets is monoidally
equivalent to a prop. The symmetric monoidal functor realising this equivalence
maps every finite set to its cardinality. Write k for the ordinal {0, . . . , k − 1}
and |X| for the cardinality of the set X. We can fix an ordering on each finite
set and use it to define the functor on morphisms: it maps a relation X → Y

to a relation k → l, where |X| = k and |Y | = l. Call this prop fRel+.

(b) The smc Rel× is not a prop but we can (and will) choose a set to define a
symmetric monoidal subcategory of it that is a prop. Given a set X, we can
consider the category whose morphisms k → l are relations Xk → X l. Note
that, with the Cartesian product as monoidal product this is not a prop, as it
is not strictly associative. But through the isomorphism Xk+l ∼= Xk × X l we
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can make this symmetric monoidal category into a prop RelX with monoidal
product given on morphisms by:

r1 ⊕ r2 =
{((

x1
x2

)
,

(
x′1
x′2

))
| (x1, x

′
1) ∈ r and (x2, x

′
2) ∈ s

}
(2.53)

Furthermore, for every set X, RelX inherits the hypergraph structure of Rel×.
We will be particularly interested in subprops of RelN whose morphisms preserve
some of the algebraic structure present on N.

There is also a non-symmetric version of a prop, called a pro. We will need it for
technical purposes, in order to define some constructions on props rigorously.

Definition 26. A pro is a strict monoidal category with the natural numbers as
objects and addition as monoidal product. A morphism of pro is a strict monoidal
functor that is the identity on objects. Pros form a category we call Pro.

Remark 27. We can recover Prop as a full subcategory of the co-slice category P/Pro,
where P is the pro of permutations: this is a disconnected groupoid whose morphisms
k → l are the bijections k → l. There is an obvious forgetful functor from Prop
to the slice category P/Pro. Note that this functor is not essentially surjective and
that props are the full subcategory of P/Pro for which the permutation action of P is
natural in a sense that we will not make precise here. We refer the reader to [Zan15,
Section 2] for a more comprehensive account.

Pro(p)s are often used as a syntax for one-sorted algebraic theories, generalising
Lawvere’s account [Law63] to the symmetric monoidal case, and originating in the
work of MacLane [Mac65]. Here, one-sorted refers to the fact that the algebraic
structure is defined over a single carrier object (which we depict as a single wire) unlike
the theory of group actions, for example, which involves two types—a group and a
set on which it acts. This is an essential feature of props as every object is isomorphic
to a monoidal product of copies of the generating object. In the graphical calculus
of monoidal categories, this means that every diagram is a box with n identical
wires as input and m as output. Props have been used extensively to provide a
resource-conscious syntax for open systems [Zan15, BSZ17, BCR17]. They are also
fundamental in our approach to concurrent systems. We will be particularly interested
in giving presentations (also called axiomatisations) of props in order to understand
their morphisms in terms of their interactions with each other rather than in reference
to a semantic universe.
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2.2.1 Freely generated props

We will need the definition of a prop that is freely generated from a signature, that is,
a set of generators and equations. The following is often considered folklore and, as a
result, is left undefined in the literature. To our knowledge, the only formal accounts
come from [Zan15] and [BCR17, section 5]. We will follow the development of the
latter reference.

According to Definition 24, a prop T can be seen as a collection of operations
T (n,m) which we can organise into a functor N × N → Set, where N is the discrete
category with objects the natural numbers.

Definition 28. The category of signatures is the category SetN×N with functors as
objects and natural transformations as morphisms.

Proposition 29. There is a forgetful functor U : Prop → SetN×N sending a prop
to its underlying signature. Moreover this functor is monadic: it has a left adjoint
F : SetN×N → Prop and the category of algebras for the monad UF is equivalent to
the category of props.

Proof. This is a generalization of Lawvere’s original result [Law63] on algebraic the-
ories. The details can be found in [BCR17, Appendix A].

This result allows us to speak about the free prop FΣ on a signature Σ. More
intuitively, the prop freely generated by Σ has composites of elements of Σ, identities
and braidings as morphisms, modulo the naturality laws of (strict) smc. In addition
we can describe any prop using a presentation by generators and equations as the
following proposition states.

Proposition 30. Any prop is the coequaliser in Prop of two parallel prop morphisms
of the form

FE
ρ
//

λ // FΣ

for two signatures E and Σ.

Proof. This is a consequence of the fact that Prop is a category of algebras over a
monad and therefore the colimit completion of the associated Kleisli category [BW85,
Section 3.3, Proposition 4]. Let ε : FU → 1 be the counit of the adjunction in
proposition 29. If T is the prop at hand, let Σ = UT and E = UFUT, with the two
morphisms λ = FUεT and ρ = εFUT.
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(as)= (co)= (unl)=

(coas)= (coco)= (counl)=

(bi)= (biun)= (bicoun)=

(idpt)= (bo)=

Figure 2.1: Presentation of BiB ∼= Rel+.

Definition 31. We call the data of Σ, E and two parallel morphisms λ, ρ : FE → FΣ,
a presentation.

The elements of Σ serve as generators for T while those of E are the equations that
hold between them. Thus, given e an equation in E(n,m) the morphisms FUεT(e)
and εFUT(e) in the free prop on Σ are equal in T. Proposition 30 guarantees that
presentations of props in terms of generators and relations do indeed define props.

We give below two examples that illustrate Proposition 30.

Example 32. The prop fRel+ is isomorphic to the prop BiB freely generated by the
signature for an idempotent commutative bimonoid. This can be seen as a conse-
quence of Theorem 63 that we will cover in the following chapter. For reference,
its presentation is given in Fig. 2.1: there are four generators at the top and ten
equations below. Note that the symmetry morphism : 2 → 2 is not included in
the generators since it is assumed in the structure of the prop. We can still have
equations specifying its interaction with the generators, such as the commutativity
equation (co) for the monoid.

Example 33. Another interesting prop is Frob, the prop of extra-special commutative
Frobenius algebras in Fig. 2.2: This prop is the simplest hypergraph category as
it contains only the required Frobenius structure. It is equivalent to the category
CoRel of corelations [BG01, Zan16, CF17] whose objects are finite sets and morphisms
X → Y are equivalence relations over X + Y or, equivalently, jointly epic cospans,
composed via pushout.
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(coas)= (coco)= (counl)=

(as)= (co)= (unl)=

(fr1)= (fr2)= (sp)= (bo)=

Figure 2.2: Presentation of Frob ∼= CoRel.

2.2.2 Operations on props

Coproduct of props There are various ways to compose pro(p)s [Lac04]. The
simplest is the sum. As we saw in remark 27, Prop is a full subcategory of the co-slice
category P/Pro.

Proposition 34. For T and S two props, the coproduct T + S in Prop is given by the
following pushout over P in Cat:

T +P S

T

;;

S

cc

P

cc ;;

Proof. See the proof of [Zan15, Proposition 2.10].

The pushout effectively identifies the action of permutations on the sum of the
two props. We also have the following easy recipe for the coproduct of two props
given their presentations:

Corollary 35. If T and S are props with respective presentations (ΣT, ET, λT, ρT)
and (ΣS, ES, λS, ρS), the coproduct T + S is given by the prop with presentation (ΣT +
ΣS, ET + ES, λT + λS, ρT + ρS).

Proof. First, because (small) colimits commute with (small) colimits the coproduct
of two coequalisers is the coequaliser of the coproduct:

FET + FES
ρT+ρS

//

λT+λS // FΣT + FΣS // T + S (2.54)
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and since left adjoints preserve colimits, we have natural isomorphisms

F (ΣT + ΣS) ∼= FΣT + FΣS and F (ET + ES) ∼= FET + FES (2.55)

from which we can conclude that T+S is also a coequaliser for the following diagram,
as required:

F (ET + ES) //
// F (ΣT + ΣS) // T + S (2.56)

Example 36. In [FC13] the authors use the sum of props to define a compositional
theory of directed acyclic graphs. Taking the sum of the free props over a single
1 → 1 morphism with no equations, and the props for idempotent bialgebras, BiB
(Example 32), they are able to model the composition of directed graphs in a way
that preserves the acyclicity condition. Swapping the prop of bimonoids for that of
Frobenius monoids gives a prop of open graphs (without any acyclicity condition).
This was first noticed in [RSW05].

Quotient of props Taking the coproduct of two props is often not very interesting
because the two props do not interact. This is why we occasionally need to add more
equations to enforce some behaviour or compatibility between their morphisms. At
the level of the presentation, this amounts to simply adding these equations to the
signature.

Definition 37. Let T be a prop presented by (Σ, E, λ, ρ), and X a set of equations
between morphisms of T, i.e., a pair of maps l, r : X → FΣ. Then, the codomain of
the coequaliser

FE + FX
ρ+r

//

λ+l
// FΣ // T/X (2.57)

is T/X the prop T quotiented by the equations of X.

2.3 Interacting Hopf algebras: the calculus of lin-
ear relations

While it is not strictly necessary, it is useful to contrast some of the work in this
thesis with the graphical calculus of linear relations, developed in [BSZ17, Zan15].
This work largely inspired ours and we will sometimes refer to it when contrasting it
with our calculus. Key differences will be highlighted.

Fix a field K.
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Definition 38. A linear relation k → l is a linear subspace R ⊆ Kk ×Kl.

Linear relations form a subprop LinRelK of RelK, i.e., they are stable under relational
composition and monoidal product.

In [BSZ17], the authors give a presentation of this prop that they name Interact-
ing Hopf algebras, IHK. The main ingredients are two (extra-special commutative)
Frobenius monoids that interact as a Hopf bimonoid.

Definition 39. Let IHK be the prop freely generated by the signature given in Fig. 2.3.

This gives a sound and fully complete axiomatisation of linear relations.

Theorem 40. LinRelK is isomorphic to IHK.

When K is the field of fractions of a polynomial ring, the presentation gives a
complete graphical syntax for signal flow graphs [BSZ14, BSZ15, FSR16], a notation
commonly used in control theory to represent the behaviour of linear time-invariant
dynamical systems.
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(◦-as)= (◦-co)= (◦-unl)=

(•-coas)= (•-coco)= (•-counl)=

(•-as)= (•-co)= (•-unl)=

(◦•-bi)= (◦•-biun)= (•◦-biun)= (◦•-bo)=

(•-fr1)= (•-fr2)= (•-sp)= (•-bo)=

(◦-fr1)= (◦-fr2)= (◦-sp)= (◦-bo)=

r

r (add)= r
(zer)= r

r
(dup)=

r

r
r

(del)=

r s
(×)= rs

s

r (+)= r + s 0
(0)=

r r
(r-inv)= (r-coinv)= r r for r 6= 0

Figure 2.3: Axioms of Interacting Hopf Algebras (IHK).
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Chapter 3

The algebra of non-determinism
and synchronisation

3.1 Overview

Concurrent programming is the art of designing synchronisation mechanisms through
which different processes coordinate access to shared resources. Because of the in-
herent unpredictability of the order of events in a distributed system [Lam78], these
synchronisation mechanisms have to deal with potentially non-deterministic threads
of execution. The aim of our work is to study this interplay of synchronisation and
non-determinism with algebraic tools.

Our approach takes after the component-based approach to software engineering:
we separate systems into three categories of elements with different purposes and
sets of concerns, namely data, processors (also called components) and connectors.
In this thesis, we will focus on the latter category. Connectors provide the necessary
coordination layer between potentially heterogeneous components that exchange data
through their interfaces. Their behaviour has to be specified independently of any
particular implementation and of the components that they connect.

In this chapter, we develop a prop of connectors that will constitute the basis for
a coordination language that we will extend in subsequent chapters. The morphisms
of this prop are multiport channels that manipulate discrete resources (analogous
to tokens in Petri nets) in order to specify certain synchronisation patterns at their
boundary ports. Thus, they act as coordinators that specify a protocol between the
components that they connect.

The main inspiration for the language we develop comes from Petri nets. In [BMM11,
SMMB13] the authors develop a compositional treatment of nets in which they can
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synchronise with their environment through open transitions. Two nets can be com-
posed in parallel or by connecting their boundary transitions. Thus they form a prop
in which the closed morphisms (those of type 0→ 0) are the usual Petri nets. Some
morphisms in this prop are connectors without places—just boundary transitions.
This chapter can be seen as a microscopic analysis of these placeless nets, identifying
the basic building blocks and their fundamental interactions. It will take us a little
while, with a few detours along the way, to make the connection between the founda-
tional work laid out in this chapter and the nets of [BMM11] precise. The reader will
have to wait until Section 5.2.3, after we have introduced a notion of state. In this
chapter (and the next), the language we introduce is entirely stateless and therefore
with limited expressiveness for the purpose of specifying real-world systems. How-
ever, we believe that the results of this chapter highlight more clearly the fundamental
algebraic structures of synchronisation protocols in concurrency.

A first look at the prop of transitions of nets with boundaries reveals that two dif-
ferent types of behaviours coexist: a subprop of asynchronous and non-deterministic
connectors and another of synchronous connectors. The concepts of synchronisation
and non-determinism, both fundamental, can be integrated into a consistent picture
of concurrency when interpreted in a resource-sensitive context, as we will now see.

Independently, the algebraic structure of each of these subprops is well understood.
It will be their interaction that will interest us here. To explain this, let us come back
to fRel+, the prop of relations with the disjoint sum as monoidal product. It can
be seen as a primitive model of non-deterministic computation and, as we saw in
Example 32, is monoidally equivalent to the free prop on an idempotent commutative
bimonoid. Following Fig. 2.1, we represent its generators by:

With these components, a relation can be represented unambiguously as a bipartite
graph. For example, R = {(1, 1), (1, 2), (2, 2)} is given by

(3.1)

We can think of the graph as specifying the evolution of a process, from left to right:
its state may change from i to j if and only if (i, j) ∈ R. We can imagine that a
process is represented by a single token whose state is its position on the graph. It
enters from one port on the left of the diagram and is routed non-deterministically
to a port on the right, provided that the two ports are connected. Notice that there
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is nothing preventing us from imagining that there is more than one token flowing
around the network, each representing a thread or a different process whose state
may evolve non-deterministically, as specified by the connectivity of the graph.

With this multi-token interpretation, if the syntax stays the same, our semantics
changes: to represent systems that can support an arbitrary number of processes, the
relations k → l that we consider are not subsets of k × l any longer, but morphisms
of RelN (see Example 25 (b)), i.e., subsets of Nk × Nl. The generating morphisms
of fRel+ admit a particularly simple and elegant interpretation in RelN. They denote
addition, zero and their transpose!

J K =
{((

n
m

)
, n+m

)
| (n,m) ∈ N2

}
J K = {(0, •)} (3.2)

J K =
{(

n+m,

(
n
m

))
| (n,m) ∈ N2

}
J K = {(•, 0)} (3.3)

So far, the expressive power of this calculus is rather limited, as the connec-
tors behave completely asynchronously and processes never interact with each other.
Changing the interpretation of our basic syntax does not actually change what we
can express in it. In concurrency, interesting behaviour arises when different pro-
cesses are allowed to interact, whether it is by accessing shared resources (e.g. a
database), merging, or spawning new copies of themselves. In other words, we would
like primitives to express how concurrent processes synchronise.

To capture this behaviour, we add synchronous connectors that we depict with a
black structure:

In the process interpretation, the semantics of these connectors is straightforward—
they represent duplicating, deleting, merging and spawning processes. The associated
relations in RelN are:

J K =
{(

n,

(
n
n

))
| n ∈ N

}
J K = {(n, •) | n ∈ N} (3.4)

J K =
{((

n
n

)
, n

)
| n ∈ N

}
J K = {(•, n) | n ∈ N} (3.5)

In categorical terms, we notice that these are simply the monoid and comonoid of the
hypergraph structure in RelN, inherited from the Frobenius structure on N in Rel×.
As such, their behaviour is captured precisely by the axioms for extra-special com-
mutative Frobenius monoids. For Petri nets, we will see that these provide the basic
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infrastructure that synchronises the firing of transitions depending on the availability
of tokens in places.

To summarise, we have explained how non-determinism and synchronisation can
be seen as part of the same syntax, provided that we shift to a resource-sensitive
interpretation. The central idea is to keep track of the number of processes that are
running by reasoning in RelN. However, we have not explained how the black and
white connectors interact. The purpose of this chapter is to characterise precisely
the expressive power of the above graphical syntax, that is, the subcategory of RelN
it generates. More importantly, we give a presentation of it, producing a sound and
complete set of equations to reason about the behaviour of the corresponding systems.

Remark 41. The results of Sections 3.3, 3.4 and 3.6 have been published in [BHP+19],
co-authored with Filippo Bonchi, Josh Holland, Pawe l Sobociński and Fabio Zanasi.
The precise formulation of the resource calculus (Definition 54) and the proof of its
completeness for additive relations (Theorem 59) is the work of the author of this
thesis. The rest of [BHP+19] was written collaboratively and the present author is
greatly indebted to the vision and ideas of his co-authors for the presentation of the
results of this chapter.

Note that the proof of Theorem 59 as stated in [BHP+19] is incorrect: it makes
use a subtly weaker axiom scheme that is not sufficient to carry out the rewriting
of diagrams into normal form as explained in Section 3.6. To obtain a terminating
rewriting procedure we had to modify the axiom of the resource calculus slightly and
it is still open whether the statement of Theorem 59 found in [BHP+19] is correct,
as it could be proved via a different method. However, the author strongly believes
that no such proof exists, that the resource calculus as presented in [BHP+19] is
incomplete for additive relations and that the equations of the resource calculus as
presented in this thesis are necessary to guarantee completeness.

3.2 Additive monoids

All the basic connectors that we introduced in the previous section share an essential
trait: their semantics respect the additive structure of N, in the sense that all of the
associated relations contain zero and are closed under addition in Nk × Nl (defined
componentwise).

In this section, we introduce key notions from the theory of finitely generated
commutative monoids that we will need to characterise the subprop of RelN generated
by the basic black and white connectors.
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The monoids in which we are interested can be thought of as discrete analogues
of convex polyhedral cones in Rd. Notice that N is free as a monoid and therefore,
we do not need to introduce nonnegative linear combinations to define the equivalent
of cones over N. We can rely on the corresponding notion to be simply closed under
addition and this is why we will prefer the term additive monoid.

Remark 42 (Notational convention). We use boldface a,b, c, . . . to denote natural
number vectors and capital letters A,B,C, . . . for matrices.

Definition 43. An additive monoid is a finitely generated submonoid of Nd for some
nonnegative integer d.

Additive monoids inherit a lot of properties from Nd: they are

• commutative,

• nonnegative, i.e., a + b = 0 iff a = 0 and b = 0,

• cancellative, i.e., a + c = b + c iff a = b, and

• torsion-free, i.e., na = nb iff a = b.

In fact, these properties are enough to fully characterise them (as finitely generated
monoids) [RGS99, Theorem 3.11]. In the literature, additive monoids are most com-
monly known as affine monoids. We prefer the term additive, not only because it is
more descriptive, but also because the term affine clashes with terminology that we
will use later.

Since N is not Noetherian, not all submonoids of Nd are finitely generated. For
example the monoid M = {(n,m) | n > m} ∪ {(0, 0)} is not. To see this, imagine
that it were finitely generated, say by (n1,m1), . . . , (np,mp). Let j be the index for
which the ratio mj/nj is the largest of all the generating vectors (if there are several
generating vectors with the same ratio, choose the one with the largest components).
Then (nj + 1,mj + 1) is in M but cannot be obtained as a sum of generating vectors,
since mj + 1/nj + 1 > mj/nj.

Example 44. Like cones, additive monoids can be represented as subsets of Rd.
Their structure is generally more complicated than cones. The two graphs below
represent the additive monoids generated by {(1, 2), (3, 1)} and {(1, 3), (2, 2), (4, 1)}
respectively:
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The reader will notice that the monoid on the right resembles a three-dimensional
lattice deformed to fit a two-dimensional perspective.

As the previous example suggests, in general, we can fit lattices of arbitrary di-
mension into a fixed Nd and this is one of the features that distinguishes additive
monoids from linear subspaces. In the vector space Rd, the dimension of subspaces
is at most d. Not so for additive monoids: they can be generated by any number of
points, potentially larger than d.

We now turn to the suitable notion of basis for additive monoids. The usual
notion of linear dependence can be adapted to the context of linear algebra over the
semiring N. We say that a set of vectors is dependent if one of them is equal to a sum
(with multiplicities) of the others. Otherwise the vectors are said to be independent.

Definition 45. A basis of an additive monoid is an independent generating set.

Differently from linear subspaces, bases of additive monoids are unique. The
following theorem is well-known in the literature but we could not find a proof1 so
we give one below for completeness.

Theorem 46. Every additive monoid admits a unique basis, called its Hilbert basis.

Proof. Let A ⊆ Nd be an additive monoid. Let A∗ = A\{0} and H = A∗ \ (A∗+A∗).
Intuitively this is the set of irreducible elements of A, the non-zero elements that
cannot be further decomposed as a sum of two non-zero elements of A. We claim
that H is not only a generating set for A but that it is also independent. First, define
|a| = ∑d

i=1 ai to be the magnitude of a = ∑d
i=1 aiei, with ei the basis vectors of Nd.

• H is a generating set: if a ∈ A∗ is in H then we are done, so assume that it
is not. Then it is reducible, i.e., there exists b, c ∈ A∗ such that a = b + c.
Then |a| > |b| and |a| > |c|. Either b and c are irreducible or one of them can

1It is left as an exercise in the text that we used as a reference [RGS99].
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be further decomposed into elements of A of smaller magnitude. Reasoning by
induction on the magnitude of a, we see that the decomposition procedure has
to terminate and therefore every element of A can be expressed as a nonnegative
sum of elements of H.

• H is uniquely minimal for inclusion, i.e., if G is a generating set, we have H ⊆ G.
This is by construction, since irreducible elements cannot be expressed as the
sum of any other elements of A.

Dickson’s lemma [Dic13] (probably also known earlier to Gordan) is a remarkable
result about subsets of Nd that we will need to prove that composite monoids are
finitely generated (once we have defined composition).

Theorem 47 (Dickson-Gordan). Every subset S ⊆ Nd contains finitely many mini-
mal points.

The following lemma is equivalent to Theorem 47. Consider the set Nd with the
product ordering inherited from N.

Lemma 48. Every set {xi}i≥0 in Nd such that xi � xj whenever i < j is finite.

Proof. We reason by induction on d. For d = 1 the result follows immediately from
the fact that the usual order on N is a total order: the non-increasing condition means
that xi < x0 for all 0 < i. There are only finitely many such nonnegative integers.

Assume that the statement of the lemma is true for d and that there exists an
infinite sequence {xi}i≥0 in Nd+1 such that xi � xj whenever i < j. From this
sequence we will construct an infinite non-increasing sequence in Nd, a contradiction.

Let us write π : Nd+1 → N for the projection onto the (d+1)th component. Let k1

be the first index such that π(xk1) is minimal in the set {π(xi)}i≥0. Similarly let k2 be
the first index such that π(xk1) is minimal in the set {π(xi)}i≥k1+1. We can repeat this
process to obtain a sequence {yi = xki

}i≥0 of elements of Nd+1. Call πd : Nd+1 → Nd

the projection onto the first d components. We claim that the sequence {πd(yi)}i≥0

satisfies the condition in the statement of the lemma. Take i and j to be two indexes
such that i < j. By construction π(yi) ≤ π(yj). Also by construction, we have
yi = xki

� xkj
= yj since ki < kj. This means that πd(yi) � πd(yj), as we wanted.

Proof of Theorem 47. Using the lexicographic ordering (for instance) we can totally
order the set of minimal points of S into a sequence {mi}i≥0 of elements of Nd. In
the product order they satisfy mi � mj whenever i < j since they are incomparable.
By Lemma 48, this set is finite.
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3.3 The prop of additive relations

We now show that our syntax is universal for a collection of relations that we call
additive relations. We define them and show that they form a subprop of RelN.

Definition 49. An additive relation of type k → l is an additive monoid R ⊆ Nk×Nl.

Remark 50. Note that in the definition above, we have identified Nk × Nl with

Nk+l through the isomorphism (a,b) 7→
(

a
b

)
. In general, we prefer to write additive

relations as pairs of vectors to distinguish the domain from the codomain and avoid
type errors. With the isomorphism Nk×Nl ∼= Nk+l, all the usual operations on additive
monoids are available: if R,R′ : k → l are additive relations of the same type, then
both the intersection R ∩ R′ and the Minkowski sum R + R′ = {(a + a′,b + b′) |
(a,b) ∈ R and (a′,b′) ∈ R′} are additive relations. Every pair (a,b) ∈ Nk × Nl

generates an additive relation 〈(a,b)〉 = {(na, nb) | n ∈ N}. More generally, for a
finite set G = {(a1,b1), · · · , (ap,bp)} of points in Nk × Nl,

〈G〉 =
{ p∑
i=1

ni(ai,bi) | n1, . . . , np ∈ N
}
. (3.6)

is an additive relation.

By definition, additive relations, like additive monoids, are finitely generated. As
a sanity check, we should verify that this is also the case for the semantics of our
basic connectors:

J K =
〈(

1,
(

1
1

))〉
J K = 〈(1, •)〉 (3.7)

J K =
〈{((

0
1

)
, 1
)
,

((
1
0

)
, 1
)}〉

J K = 〈(0, •)〉. (3.8)

As they are just the converse relations, the generators for the other connectors can
be obtained by reversing the order of the generating pairs.

We now show that additive relations form a subprop, AddRel, of RelN. We need
to verify that they are closed under composition and monoidal product. The case
of the monoidal product is straightforward: if R : k → l and R′ : k′ → l′ are addi-
tive relations with generating sets {(a1,b1), · · · , (ap,bp)} and {(a′1,b′1), · · · , (a′q,b′q)}
respectively, R⊕R′ has generating set{((

ai
a′j

)
,

(
bi
b′j

))
| 1 ≤ i ≤ p, and 1 ≤ j ≤ q

}
. (3.9)

The case of composition also goes through, but it is non-trivial.
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Proposition 51. The composition of two finitely generated additive relations is finitely
generated.

We first need to prove an intermediary result about the set along which two
additive relations synchronise.

Definition 52. For U a m× k matrix and V a m× l matrix, both with coefficients
in N, let TU,V := {(a,b) ∈ Nk × Nl | Ua = V b} be the set of transactions of U and
V .

Lemma 53. For U an m × k matrix and V an m × l matrix, TU,V is an additive
relation.

Proof. TU,V is clearly a submonoid of Nk × Nl so the only property that remains to
prove is that it is finitely generated.

By Dickson’s lemma, TU,V \ {(0,0)} has finitely many minimal elements for the
product partial order. We call these minimal transactions and claim that every trans-

action is a sum of minimal transactions. As before, we define |(a,b)| =
k∑
i=1

ai +
l∑

i=1
bi

to be the magnitude of the transaction (a,b) =



a1
...
ak

 ,

b1
...
bl


. We reason by in-

duction on the magnitude of transactions. The statement is trivial for magnitude
zero. Assume that every transaction of magnitude less than or equal to n can be
decomposed as a sum of minimal transactions. Let (a,b) ∈ T have magnitude n+ 1.
If (a,b) ∈ T is minimal we are done, so assume that it is not. Then there exists
(m,n) ∈ S, minimal, such that (m,n) ≤ (a,b). Hence, there also exists (c,d) ∈ Nd

such that (m,n) + (c,d) = (a,b). We claim that (c,d) ∈ T : we have

(m,n) + (c,d) = (m + c,n + d) (3.10)

and

Ua = U(m + c) = Um + Uc (3.11)

V b = V (n + d) = V n + V d (3.12)

And, since Ua = V b and Um = V n, we can deduce by cancellativity that Uc = V d.
Finally, since (c,d) necessarily has smaller magnitude than (a,b), it is a linear

combination of minimal transactions by the induction hypothesis and therefore so is
(a,b).

48



Proof of Proposition 51. Suppose that additive relations R : k → l and S : l → m

have respective generating sets {(a1,b1), · · · , (ap,bp)} and {(c1,d1), · · · , (cq,dq)}.
We will find a generating set for R ; S. Let U =

(
Uk
Ul

)
and V =

(
Vl
Vm

)
be the

(k + l) × p and (l + m) × q matrices whose columns are the generating vectors of R
and S, respectively. Then (a,b) ∈ R iff there exists f ∈ Np such that U f =

(
a
b

)
, and

similarly for S and V .
By Lemma 53, the commutative monoid {(e, f) ∈ Np × Nq | Ule = Vlf} is

generated by finitely many minimal elements (e1, f1), . . . , (ed, fd). We claim that
{(Uke1, Vmf1), . . . , (Uked, Vmfd)} generates R ; S.

Let (a, c) ∈ R ; S. By definition, there exits b ∈ Nl such that (a,b) ∈ R and
(b, c) ∈ S. Thus, there exists e ∈ Np and f ∈ Nq with (Uke, Ule) = (a,b) and
(Vlf , Vmf) = (b, c). Let (e, f) = ∑n

j=1 ni(ei, fi) and finally (a, c) = (Uke, Vmf) =∑n
j=1 ni(Ukei, Vmfi) as claimed.

Note that AddRel is a hypergraph prop which inherits its hypergraph structure
from RelN (Example 25 (b)). It is therefore also self-dual compact closed by Proposi-
tion 23.

3.4 The resource calculus

We now introduce a prop, freely generated by a signature containing black and white
generators, that we call the resource calculus. In Section 3.6 we will show that this
prop is isomorphic to AddRel.

Definition 54. Let Rc be the prop freely generated over the signature in Fig. 3.1.

Remark 55. Because , , and form a Frobenius monoid, we can
define and as the transpose of and using cups and caps:

:= := (3.13)

This is why we do not need and as generators in the signature of Fig. 3.1.

A few comments are in order. As we can see, this signature is very similar to the
one of IHK (Definition 39), but there remain a few crucial differences.

• In the first block, both the black and white structures are commutative monoids
and comonoids, expressing fundamental properties of addition and copying.
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(◦-as)= (◦-co)= (◦-unl)=

(•-coas)= (•-coco)= (•-counl)=

(•-as)= (•-co)= (•-unl)=

(◦•-bi)= (◦•-biun)= (•◦-biun)= (◦•-bo)=

(fr1)= (fr2)= (•-sp)= (•-bo)=

(◦-bi)= (◦-biun)= (◦-bicoun)=

(◦-sp)= (◦-bo)=

(can)= (tot)=

n
n

(n-inv)=
n

for n 6= 0

Figure 3.1: Axioms of the resource calculus.
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• In the second block, the white monoid and black comonoid interact as a bi-
monoid. Bimonoids are one of two canonical ways that monoids and comonoids
interact, as shown in [Lac04].

• In the third block, the black monoid and comonoid form an extra-special Frobe-
nius monoid (cf. Section 2.1.2.3). The Frobenius equations, together with the
special equation, are the other canonical way in which monoids and comonoids
interact, as identified in [Lac04].

• In the fourth block, deviating from the equational theory of linear relations, the
white monoid-comonoid pair forms a special bimonoid, not a Frobenius monoid.
Here, the Frobenius structure—if present—would play the role of assuming the
presence of additive inverses [CPV13, BPS17]. Since we are dealing with the
natural numbers, the structure satisfies only the bimonoid equations. The key
difference here is not the ( -bi) equation, which is also satisfied by any special
commutative Frobenius monoid, but the ( -biun) equation. This equation wit-
nesses the nonnegativity of elements in the underlying semiring: if n + m = 0
then both n and m must be zero. Note that this is consistent with the resource
interpretation. We want to think of the numbers as processes or threads in a
concurrent computation and there is no such thing as a negative process. This
prevents the -operation from being Frobenius and therefore from giving rise
to a second hypergraph structure on AddRel. Indeed if it were also Frobenius,
we would get an inconsistent theory in which the identity separates and all
morphisms of the same type are equal:

= = = (3.14)

• In IHK the - -bimonoid is also a Hopf monoid, i.e., there exists a morphism,
called the antipode, satisfying

=

The antipode encodes the negation of K and comes for free from the interaction
of the two Frobenius monoids:

=

In the case of additive relations, this morphism cannot form an antipode be-
cause, as we saw earlier, the -cup reduces to two disconnected . Once
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more, this is consistent with the resource interpretation of additive relations, as
allowing an antipode would allow one to talk about negative resources.

• The (can) equation witnesses the cancellativity of addition. This equation holds
for linear relations but the crucial difference is that, for additive relations, the
colour-swap does not hold:

6=

We can think of the following morphism as a form of controlled subtraction,
with which we keep track of what we subtract:

t |

=
{((

a
b

)
,

(
c
d

))
∈ N4 | a = c and b = a+ d

}

For a ring, this operation would be total but, because we lack additive inverses,
it is only partial. Cancellativity is the next best thing after being a group2. In-
tuitively (can) means that adding something and then subtracting it can always
be done but the converse may not be possible if we want to subtract more than
we already have. Again, this makes sense when thinking of the elements of N
as resources or processes.

• Interestingly, the -structure being a bimonoid and not Frobenius means that
we can reason about the natural order on the base semiring. Concretely, we can
express the following relation:

r z
= {(n,m) ∈ N2 |n ≤ m}

The equation (tot) axiomatises its behaviour. Note that, if and
satisfied the Frobenius equation, the diagram above would simply reduce to
J K.

• Finally, the last equation is an axiom scheme, showing how the calculus accounts
for the multiplicative structure of N. It uses the following syntactic sugar, along
with the obvious mirror image versions, defined inductively:

0 := n :=
n− 1

(3.15)

2All cancellative commutative monoids embed faithfully into an Abelian group by the same
construction that builds the integers from the naturals, also known as the Grothendieck group
construction in the context of K-theory.
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They represent the additive relations of the form 〈(1, n)〉. We call these scalars.
Semantically, the axiom scheme expresses the fact that nk+ r is a multiple of n
if and only if r is also a mutliple of n. This provides the engine for a graphical
version of Euclidean division. Note that (n-inv) implies that multiplication by
n (for n 6= 0) has a one-sided inverse:

n n = (3.16)

since we can easily prove by induction that

n = (3.17)

and therefore

n n
(◦-un)=

n
n

(n-inv)=
n

= (◦-un)= (3.18)

In IHK, the converse axioms also hold. Here, they are not included in the
signature for Rc since they are not sound for AddRel and rely on the ability to
divide by non-zero scalars. As the semiring N does not contain multiplicative
inverses, this is not possible in general.

Note that, since , , and form a Frobenius monoid, Rc is a
hypergraph prop: for k ∈ N we can generalise , , and to k wires.
Let α0 := and αk : k + k → k + k be given inductively by

αk+1 :=
αk kk

k

k (3.19)

Then, let

k

k

k := αk

k

k
(3.20)

The dual connector can be defined similarly. For example,

3

3
3 := (3.21)

For , simply let
k :=

k − 1

(3.22)
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by induction, and similarly for the dual. And, since Rc is hypergraph, it is also self-

dual compact closed by Proposition 23. We also use and to denote
and respectively.

With the same construction, we can extend , , and to an
arbitrary number of wires as well.

Proposition 56. The monoid ( , ) and comonoid ( , ) form a commu-
tative bimonoid.

Proof. We prove the bimonoid law for the monoid-comonoid pair:

= = (◦•-bi)= (3.23)

= = (3.24)

The equalities involving the unit and counit can be proven entirely analogously.

It is time to reveal that the mapping J− K that we have been using informally so
far can be made into a strict symmetric monoidal functor or, in other words, a prop
morphism. First, by the universal property of free props, there is a unique way of
extending the mapping of the generators to the entire resource calculus.

Definition 57. Let J− K : Rc→ AddRel be the unique mapping defined on the gen-
erators of Rc as:

J K =
{((

n
m

)
, n+m

)
| (n,m) ∈ N2

}
J K = {(0, •)} (3.25)

J K =
{(

n,

(
n
n

))
| n ∈ N

}
J K = {(n, •) | n ∈ N} (3.26)

J K =
{((

n
n

)
, n

)
| n ∈ N

}
J K = {(•, n) | n ∈ N} (3.27)

To show that it is indeed a prop morphism, we need to check that the equations
of the resource calculus are sound for additive relations.

Proposition 58. J− K : Rc→ AddRel is a prop morphism.
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Proof. We need to verify that the equations of Rc are satisfied in AddRel. Most of them
are straightforward: the -structure is mapped to the Frobenius monoid inherited from
Rel×, addition is a commutative monoid and, with the Frobenius structure, it gives a
bimonoid because it is a function (total and single valued). The two laws (◦-sp) and
(◦-bo) are immediate; (◦-biun) and (◦-bicoun) witness the nonnegativity of natural
numbers as we explained above. There are a few equations worth proving explicitly
because they play an important role in the axiomatisation.

• First, we have
t |

=
{((

n
m

)
,

(
n′

m′

))
| n = n′ and n+m = n′ +m′

}
(3.28)

Substituting n for n′ and using the cancellativity property of N, n+m = n+m′

implies m = m′. Thus,
t |

=
r z

. (3.29)

• Next, we have
r z

= {(n,m) | there exist p, q such that n+ p = m+ q}. (3.30)

Clearly, any pair of naturals has (infinitely many) natural numbers greater or
equal to both. It follows that the relation is total, in other words:

r z
= J K . (3.31)

• Finally,
r z

=
{((

n
m

)
,

(
n′

m′

))
| n+m = n′ +m′

}
(3.32)

and
t |

=
{((

n1 + n2
m1 +m2

)
,

(
n1 +m1
n2 +m2

))
| n1, n2,m1,m2 ∈ N

}
(3.33)

By commutativity of addition, n1 + n2 +m1 +m2 = n1 +m1 + n2 +m2 so
t |

⊆
r z

(3.34)
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For the converse inclusion we can distinguish several cases. First, if n = n′ then
m = m′ by cancellativity and we can just set n1 = n, n2 = 0 and m1 = 0,m2 =
m. Otherwise, we can assume without loss of generality that n′ > n. Then there
exists k > 0 such that n+ k = n′. So n+m = n+ k+m′ and thus m = m′+ k.
Now, if n = m′, set n1 = n, n2 = 0 and m1 = m′,m2 = k. Otherwise, we can
assume without loss of generality that m′ > n, i.e., that there exists p such that
n + p = m′. In this case, set n1 = n, n2 = 0 and m1 = k,m2 = n + p. As a
result,

r z
⊆

t |

(3.35)

The main technical result of this chapter is the following, establishing the full
completeness of the resource calculus for additive relations.

Theorem 59. J− K : Rc→ AddRel is an isomorphism of props.

Fullness in this case means that every additive relation can be expressed as a
resource calculus diagram, while completeness states that the functor J− K is faithful,
i.e., that whenever two diagrams have the same interpretation as an additive relation,
they are equal in the resource calculus. The proof of Theorem 59 can be found in
Section 3.6. First, we need to take a detour through the simpler prop of matrices with
coefficients in a semiring and explain how to obtain a sound and complete calculus
for it.

3.5 Necessary detour: matrices over a semiring

We fix a semiring R which we assume commutative. This section is dedicated to a
presentation of the prop MatR of matrices over R. We rely on the result of [Zan15]—
itself an extension of the work of [Lac04]—in which the author gives a presentation
of the theory of matrices over a principal ideal domain. However, his proof does not
make use of additive inverses and can be adapted without changes to the case of a
semiring. A more direct proof via a normal form argument is also found in [BE15]
which is stated for the more restricted case of matrices with coefficients in a field.
However, once more, the proof does not make any use of additive or multiplicative
inverses and can be read directly as the proof of Theorem 63, below.
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r for r ∈ R

(as)= (co)= (unl)=

(coas)= (coco)= (counl)=

(bi)= (◦-biun)= (•-biun)= (bo)=

r

r (add)= r
(zer)= r

r
(dup)=

r

r
r

(del)=

r s
(×)= rs

s

r (+)= r + s

1
(1)= 0

(0)=

Figure 3.2: Presentation of BiR

Definition 60. Let MatR be the prop in which morphisms k → l are l × k matrices
with coefficients in R, the monoidal product is the direct sum and composition is
matrix multiplication.

Proposition 61. There is a prop embedding ι : MatR ↪→ AddRel.

Proof. The functor ι maps an l×k matrix A to the graph of the corresponding linear
map: ι(A) = {(x, Ax) | x ∈ Rk}. It is clearly faithful.

The corresponding equational theory is that of commutative bimonoids.

Definition 62. BiR, the prop of commutative bimonoids with scalars in R, is the prop
freely generated by the signature in Fig. 3.2.

Simply from the signatures, we see that there is an embedding BiN ↪→ Rc.

Theorem 63 (e.g. [Zan15, Prop. 3.9], or [BE15, Section 3]). BiR is isomorphic to
MatR.
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Remark 64. The axioms for BiR describe a commutative monoid, equipped with a
multiplicative structure and its compatibility with the copying and deleting operations
that come with any Cartesian category [Zan15, Theorem 2.42]. In [Zan15], the author
deals with the more structured case of Hopf algebras for which they need the additive
inverse of a ring. As we do not assume the existence of inverses, the bimonoid does
not necessarily have an antipode. However, if R is a ring, the scalar −1 : 1→ 1 is the
antipode and the additional equation defining a Hopf algebra is a consequence of the
(+) law, encoding the inverse operation with the rest of the additive structure of R.

In order to develop some intuition for the isomorphism, let us demonstrate how
matrices are represented diagrammatically. An l×k matrix A corresponds to a string
diagram with k wires on the left and l wires on the right—the left ports can be
interpreted as the columns and the right ports as the rows of A. The left jth port
is connected to the ith port on the right through an r-weighted wire whenever Aij
is a nonzero scalar r ∈ R. When the Aij entry is 0, they are disconnected. Since
composition along a wire carries the multiplicative structure of R, we can simply
draw the connection as a plain wire if Aij = 1. For example,

The matrix A =


a 0 0
b 1 0
1 0 0
0 0 0

 is drawn as

a

b

(3.36)

In the particular case of R = N, if Aij = n the ith and jth ports are connected
through n wires so that the matrix above with a = 3, b = 2 is represented by

(3.37)

Thus, for the naturals, the representation of matrices reduces to counting paths be-
tween left and right ports.

Remark 65 (Notational convention). We call matrix diagram a diagram that is in
the image of the embedding of BiN into Rc. In light of the isomorphism of Theorem 63
it is harmless to identify a matrix diagram with the unique matrix it represents, and
we will use the same capital letter to denote both the diagram and its corresponding
matrix. As a result we will also identify features of matrix diagrams with those of
the matrix it represents: for example, we will freely refer to rows and columns of a
matrix diagram.
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3.6 Full completeness

This section is dedicated to proving Theorem 59 in order to establish the full com-
pleteness of the resource calculus.

Fullness. To see that J− K is full, we simply have to notice that, for an additive
relation R : k → l there exists p ∈ N and a (k+ l)× p matrix A that represents R, in
the sense that:

(a,b) ∈ R iff there exists x ∈ Np verifying Ax =
(

a
b

)
(3.38)

Clearly, 〈(a1,b1), . . . , (ap,bp)〉 is represented by the matrix(
a1 a2 . . . ap
b1 b2 . . . bp

)

and the generating set may be recovered from every matrix by taking its set of
columns. We call such a matrix a representing matrix for R.

As we saw in Section 3.5, we can use the isomorphism of Theorem 63 and the
embedding of BiN into Rc to obtain a diagram for the matrix A representing R.

Finally, with the cap k we can bend the last k wires from the right to the left
and we can use the unit of the Frobenius monoid to delete (which, semantically,
corresponds to universal quantification) the leftmost p wires. The resulting diagram
dA is shown below, and it follows that R = J dA K.

dA := A
l

k

p

(3.39)

Faithfulness. Proving faithfulness of J− K is more complicated; as is often the case
for completeness proofs, we use a normal form argument, inspired by the proof of
completeness for linear relations in [BE15]. We proceed in two steps:

1. in Section 3.6.1 we show that every diagram can be rewritten into a prenormal
form corresponding to a matrix representation, using only the equations of the
resource calculus; then

2. in Section 3.6.2 we show that every diagram in prenormal form is equal to one
for which the columns of the representing matrix are independent, that is, for
which its columns are the Hilbert basis of the associated relation.
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First, we need a few lemmas.

Lemma 66. If A is the diagram of a l × k matrix, then

A

l
k

k A

= A l
k

k

Proof. We could prove this by structural induction but it is easier to appeal to the
completeness result of Theorem 63 and the fact that A(x + y) = Ax + Ay, for all
x,y ∈ Nk.

Regarding diagrams composed only of -nodes, we will be as lax as the spider
theorem allows us to be. Recall that, by Theorem 18, any two connected networks of
-monoid and -comonoid are equal if and only if they have the same number of left

and right ports.
We also need a lemma to handle interactions between and .

Lemma 67. For n ∈ N,

=
n n

Proof. By induction on the number of input wires. The base case is simply

(spider)= ◦•-(bi)= = (3.40)

Assume that it holds for n legs. Then, for n+ 1 legs,

:=n+ 1 n

(3.41)

and, applying the induction hypothesis:

(I.H.)= (•-coun)= (3.42)

(Fr)= (◦•-bi)= (3.43)
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= (Fr)= (3.44)

We will also need the fact that scalars commute with .

Lemma 68. For n ∈ N,

n =
n

n

Proof. For n = 0,

(◦•-biun)= (spider)= (3.45)

Assume that the lemma is true for n ∈ N; then

n

(◦•-bi)=
n

(3.46)

(I.H.)= n

n

(3.47)

(spider)= n

n

(3.48)

3.6.1 Prenormal Form

We want to show that every diagram in the prop is equal to one of the following form:

A
l

k

p

(prenormal form)

where A represents a (k + l) × p matrix (or, more precisely, is in the image of the
embedding of BiN). We show this by structural induction on diagrams, where we
analyse each possible case. This yields an effective procedure to rewrite every diagram
in prenormal form using only the axioms of Rc.

While every matrix determines a unique additive relation, the converse is not true;
there may be multiple matrices representing a given additive relation as their columns
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may be dependent. As a result, multiple diagrams in prenormal form correspond to
the same additive relation. This is why the next section defines a normal form for
which the set of generators is minimal in a suitable sense so that each diagram in
normal form corresponds uniquely to an additive relation, proving the faithfulness of
J− K.

Remark 69. Since Rc is self-dual compact closed, there is a one-to-one correspon-
dence between morphisms of type k → l and those of type 0→ k + l, by Proposition
15. Therefore, it suffices to consider diagrams with 0 domain for the rest of the proof;
any other morphism can be obtained from this correspondence. In doing so, we avoid
needlessly carrying around additional wires, which can clutter notation.

Let us come back to the prenormal form and consider the case of each generator.
In the following three cases, the dotted box is in the image of the prop of N-matrices
and therefore the whole diagram is already in prenormal form.

1. For the monoidal product with zero:

A
l

=
A

l

(3.49)

2. For the monoidal product with co-delete:

A
l

=
A

l

(3.50)

3. When two wires are added:

A
l− 2

= A
l− 2

(3.51)

There are two other simple cases for which the matrix diagram A is composed with
a generator already in matrix form. For these two cases we can appeal to the com-
pleteness of the diagrammatic calculus for matrices (Theorem 63) and compose the
two matrices to obtain a diagram in prenormal form.

1. When a wire is deleted:

A
l− 1

= A
l− 1

(3.52)
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2. When a wire is copied:

A

l− 1

= A

l− 1

(3.53)

For the cases of the remaining generator, the resulting diagram is not immediately in
prenormal form and some rewriting is necessary. For the case of a co-copying node
joining two wires:

A
l− 2

(3.54)

see Section 3.6.1.4. For the rewriting of the case, we will treat two subcases
separately, even though they are not generators. They serve as lemmas for the co-
copy case and we deal with them in their own subsections as well.

1. For when a co-zero node is connected to a wire:

A
l− 1

(3.55)

see Section 3.6.1.2.

2. For when a co-addition node is connected to a wire:

A

l− 1

(3.56)

see Section 3.6.1.3.

3.6.1.1 Connectedness

We need to define a simple termination measure on which we will be able to reason by
induction in the next few sections. The rewriting procedure for the , and
cases, relies on the use of the equations of Rc to slide certain diagrams past the layer
of in the matrix block. To reason by induction and guarantee the termination
of rewriting, we need to be able to count and bound the maximum number of
to which a given diagram is connected, showing that it decreases after the inductive
step.

Definition 70. The diagram d in

A
dk
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is (p1, . . . , pk) A-connected, for pi ∈ N and 1 ≤ i ≤ k, if there exists a matrix diagram
B such that

A
dk

= B
pk

p1

d

We call A-connectedness of d the unique maximal such k-tuple.

Remark 71. Note that, as defined, connectedness is a property of diagrams (i.e.,
terms of the syntax), not of the resource calculus morphism it represents. In partic-
ular, it is not invariant under the equations of Rc. In fact, reasoning by induction
below, we will try to decrease the single component of the connectedness of and

and alternatively each component of the connectedness of , using only the
equations of Rc.

Let us come back to the treatment of the prenormal form. The next three sections
deal with the three remaining cases.

3.6.1.2 Co-zero

We will reason by induction on the A-connectedness of , in

A
l− 1

For the base case, if its connectedness is zero, we have

A
l− 1

= B (3.57)

(◦-bo)= B (3.58)

We also need the case where the connectedness is one:

A
l− 1

= B (3.59)

= B (3.60)

For the final step, we can multiply the matrix in the dotted box with B to obtain
a diagram in prenormal form (appealing once more to the completeness theorem for
the diagrammatic calculus of matrices).
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For the inductive step, assume that all diagrams of this form with up to n con-
nectedness are equal to one in prenormal form. If has n+ 1 A-connectedness, we
have

A
l− 1

= B (3.61)

(◦-bicoun)= B (3.62)

The top has B-connectedness 1 while the lower one has B-connectedness n. By
the induction hypothesis, we are done.

3.6.1.3 Co-addition

Again, we will reason by induction on the A-connectedness of in

A

l− 1

For the base case, if its connectedness is zero, we have

A

l− 1

= A′ (3.63)

(◦-biun)= A′ (3.64)

which is in prenormal form.
For the inductive step, assume that all diagrams of this form with n connectedness

are equal to one in prenormal form. If has n+ 1 A-connectedness, we have

A

l− 1

= A′ (3.65)

for some new matrix block A′ and scalar a. Note that we have implicitly used the
associativity of to assume that all other to the left of the rightmost one
are connected to its lower leg. Now, we obtain

A′
(◦-bi)=

A′
(3.66)
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(3.67)

=
A′

(3.68)

Here we should be careful of multiplying the with the matrix diagram A′ because
we might obtain a matrix whose connectedness for has increased. This can only
happen if A′11, the element in the first row and first column of A′ is non-zero, i.e., if
there is a path between the top left and right ports of the diagram for A′. If this is
the case, there exists A′′ such that:

A′
=

A′′

(3.69)

But then, we can iterate the process below as many times as there are paths between
the two ports, until we obtain a matrix B with B11 = 0.

A′

(◦•-bi ;◦-bi)=

A′′

(3.70)

(◦-bi)=

A′′

(3.71)

(Lemma 67)=

A′′

(3.72)

=

A′′

(3.73)

We repeat these steps until we have built matrix diagrams C and B as below, such
that B11 = 0. When this is the case, we can safely multiply the two matrices without
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increasing the B-connectedness of :

B

C
=

B

C
(3.74)

= B′ (3.75)

Here B′ is the product of the two matrices within the dotted rectangles. Now
has B′-connectedness n. We can therefore use the induction hypothesis to finish the
proof.

3.6.1.4 Co-copying

If n is a coefficient of the matrix represented by the diagram A below, we can find
another matrix diagram A′ such that:

A
l− 2

=

n

A′ (3.76)

=

n

A′ (3.77)

= A′ n

n

(3.78)

If we started with having (n + n′, k) A-connectedness, we end up with the
highlighted diagram above having (1, n′, k) A′-connectedness. We would like to push

and the scalar n into A′ but we have to be careful that this does not increase
the first two elements of the A′-connectedness (those corresponding to the top legs
of the two ). Indeed, we may be tempted to directly apply the procedure of
Section 3.6.1.3 to absorb the , but this näıve procedure may not terminate.
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To see this, we need to look at how we handled the case more closely. In

equation (3.68), notice that we relied on the ability to slide along the
on the left. In this process, it was rotated into a whose right port might be
connected to the left leg of one of the two we have created. This may increase
the connectedness of the diagram. We would find ourselves in the same situation as
the one in which we started, having multiplied the number of that we need to
eliminate on the right, without any bound on their connectedness. We would therefore
be unable to guarantee termination. For concreteness, consider applying this näıve
procedure to the following example:

= (3.79)

= (3.80)

= (3.81)

= . . . (3.82)

The problem is that when we apply the elimination of of the previous section,
we have to apply the same steps for every that the use of Lemma 67 in equation
(3.73) has generated. But we cannot simply repeat the same procedure because the
elimination of involves the application of the bimonoid law for the -bimonoid
which might increase the connectedness of the diagram, preventing us from reasoning
inductively. This is typical of the behaviour of the bimonoid law which increases the
complexity of diagrams and must be handled with care in any form of rewriting.

How can we circumvent this limitation? We need to be able to eliminate the
that are going to increase the connectedness of the diagram. This can be done by
eliminating loops in the following sense.

Definition 72. We say that a diagram d contains a loop when there exists a matrix
diagram U such that

d = U

n
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Loop-free diagrams factorise into a form that allows us to bound the connectedness
of in the inductive step. This is because, if there are no loops in the diagram
on the left of the equation below, there exist two matrix diagrams B and C such that

A′ n

n

=
B

C l− 2

n

n
(3.83)

We will show below how to rewrite such a diagram into prenormal form, using the
procedure on Section 3.6.1.3. Once the and scalar n are absorbed, we end up
with a matrix D such that

A′ n

n

= D

l− 2

n

(3.84)

If we started with a with (n + n′, k) A-connectedness, and provided there are
no loops, we end up with two : one with (1, p) D-connectedness and the other
with (n′, p′) D-connectedness for some p, p′ ∈ N. Thus we can apply the induction
hypothesis.

Getting rid of loops. Notice that, to avoid nontermination in the previous ex-
ample, we could have used (can) in equation (3.79) instead. In fact, we can always
use this strategy. If there are loops after equation (3.78), by definition there exists a
matrix diagram A′′ such that

A′ n

n

= A′′

n
n

(3.85)

(can)= A′′

n− 1

n

(3.86)
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(can)=
A′′

n

n− 1

(3.87)

(can)= A′′

n− 1

n

(3.88)

We can repeat this process in order to eliminate all loops. We will now explain how
to deal with the and n in a loop-free diagram.

After eliminating loops we need to be able to rewrite the following diagram into
prenormal form:

A′
m n

There are two cases.

• Case 1: m ≥ n. We have:

A′
m n

= A′
m n

(3.89)

= A′ m

n

m

m − 1

m − 1

(3.90)

= A′

n

m − 1

m

m − 1

m

(3.91)

where (3.90) is the result of applying the rewriting procedure of Section 3.6.1.3
to the scalar followed by (after potentially removing redundant generators
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as explained in Section 3.6.2). Then, we can apply the rewriting procedure of
Section 3.6.1.3 to absorb all the of the highlighted diagram below:

A′

n

m − 1

m

m − 1

m

(3.92)

As a result we can find a new matrix diagram A′′ such that

A′

n

m − 1

m

m − 1

m

= A′′
n

m − 1

m

m − 1

m

(3.93)
Now, the highlighted diagram above is in matrix form so we can find a new
matrix diagram B such that

A′′
n

m − 1

m

m − 1

m

= B

n

m

(3.94)

If m ≥ n, then there exists k, r ∈ N such that m = nk + r with r < n. So, we
can apply the new axiom (n-inv) as follows:

B

n

m

= B

nr

k n

(3.95)

= B

nr

k n

(3.96)
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= B

r

k

n

(3.97)

Since r < n we need to apply the rewriting procedure of Case 2 below.

• Case 2: m < n. This case is simply the previous case in disguise. We can apply
the rewriting steps of Case 1, mirrored: first expanding n , then using
Euclidean division to obtain k, r ∈ N such that n = mk + r with r < m, and
apply the axiom (n-inv) as before.

This game of ping-pong necessarily terminates because, by using Euclidean division
each time, we decrease the value of the scalars to which we have to apply (n-inv) at
each step.

Base cases. If has A-connectedness (0,m), we have

A
l− 2

= A′ (fr1 ; •◦-biun)= A′ (3.98)

for some matrix A′. From here, we can absorb the with the result of Section
3.6.1.2.

If has A-connectedness (1,m), we will reason by induction again. By hy-
pothesis, there exists a matrix A′ such that

A
l− 2

= A′
(Lemma 67)= A′ (3.99)

As before, we want to make sure that there are no loops. A loop implies the existence
of a matrix A′′ such that

A
l− 2

=
A′′

(3.100)

(◦-un)=
A′′

(3.101)
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(can)=
A′′

(3.102)

(Lemma 67)=
A′′

(3.103)

= A′′ (3.104)

The proof can be finished using the result of Section 3.6.1.2. If there are no loops we
can slide as follows:

A
l− 2

= A′ (3.105)

We can repeat this process until we obtain m with connectedness (1, 1). Then
we can push the m we have accumulated on the left, into the matrix A′.

In the final case, if has (1, 1) connectedness, there exists a matrix A′ such
that

A
l− 2

= A′ (3.106)

(Spider)= A′ (3.107)

where the last diagram is in prenormal form.

3.6.2 Normal form

The prenormal form does not uniquely characterise the additive relation to which it
is mapped. Two different matrices may generate the same additive relation as some
of their columns may be dependent and therefore, redundant.

Definition 73. A diagram of Rc is in normal form when the columns of the matrix
of its prenormal form are independent.
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The following proposition proves the faithfulness of J− K, provided we can show
that every diagram of Rc is equal to one in normal form.

Proposition 74. If c and d are two diagrams in normal form, J c K = J d K implies
that the representing matrices of c and d have the same set of columns.

Proof. By Proposition 46, J c K = J d K if and only if J c K and J d K have the same
Hilbert basis. Appealing to the completeness result for matrices (Theorem 63), this
is true when the representing matrices of c and d have the same set of independent
columns. But these two matrices may still differ by a permutation of their columns.
To conclude the proof, we need to show that two diagrams in normal form that differ
only by a permutation of the columns of their representing matrix, are equal. This is
a consequence of the commutativity of :

Ck

C1

l
C2

=

Ck

C1

C2
l (3.108)

(◦-co)=

Ck

C1

C2
l (3.109)

=

Ck

C2

C1
l (3.110)

=

Ck

C2

C1
l (3.111)

The general result follows from this by induction.

To be able to prove that diagrams are equal to their normal form, we need to make
sure that redundant generators can be eliminated diagrammatically from the axioms
of Rc. For linear relations over field, this step corresponds to Gaussian elimination to
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obtain a row-reduced form of the representing matrix. In our case, we need to check
that columns that are sums of other columns of the same matrix can be eliminated,
using only the equations of Rc. It is perhaps more enlightening to introduce this
procedure with an example—all the other cases being a straightforward generalisation
of the following simple example.

Example 75. We start with a three column matrix in which the third is the sum of
the first two columns. The derivation concludes with the third column eliminated.

C2

C1

C1

C2

(◦-as ;◦-co)=
C1

C2

C1

C2

(Lem. 66)=
C1

C2

=
C1

C2

(◦-coco)=
C1

C2

(tot)=
C1

C2

(fr1 ;•-coun)=
C1

C2

The key step is the use of the (tot) equation which we had not used previously. The
general case proceeds exactly as in Example 75—we will just need two lemmas to
eliminate redundant sums of columns of arbitrary size. The first one is a generalised
form of (tot).

Lemma 76. For n ≥ 1,

n = n

Proof. By induction on n. The base case is

(Prop. 56)= (sp)= (3.112)

Assume that it holds for some positive integer n.

= (tot)= =

(3.113)
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(•-as)= (◦-co)= (◦-as)= (◦•-bi)=

(3.114)

(I.H.)= = (◦-co)= (tot)= (spider)=
(3.115)

The next lemma allows us to handle weighted sums by reducing them to the case
of lemma 76 (just like nx = x + · · ·+ x, n times).

Lemma 77. For n ≥ 1,

n
= n

Proof. By induction on n. The base case is immediate so assume that the lemma
holds for some positive integer n− 1. Then,

n

(◦-sp)=
n

(3.116)

(◦•-biun)=
n

(3.117)

:=
n− 1

(3.118)

(◦-as)=
n− 1

(3.119)

(I.H.)= n (3.120)
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We can now proceed exactly as in Example 75 to delete redundant generating
columns in the general case:

Ck

C1

C1

Ck

p1

pk

l (◦-as ; co)=

Ck

C1

C1

Ck

l

p1

pk

(3.121)

(Lemma 66)=

Ck

C1

l

p1

pk

(3.122)

(Lemma 77)=

Ck

C1
p1

pk

l

(3.123)

(Lemma 76)=

Ck

C1
p1

pk

l (3.124)
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(◦•-biun ;◦-sp)= l

Ck

C1

(3.125)

Remark 78. Note that we did not give an effective procedure to rewrite a diagram
in prenormal form into one in normal form. We have only shown that, if there are
redundancies, we can eliminate them with the axioms of Rc but did not show how to
identify them. This is sufficient for our purposes.

3.7 The subprop of multirelations

We now present the prop of multirelations. It is a subprop of AddRel whose diagrams
admit a consistent directionality. Left ports can be seen as inputs, right ports as
outputs and the resources as flowing from inputs to outputs. This interpretation
makes sense because we only have access to and (and both -monoid and
comonoid) and therefore the resulting prop is not compact closed. We also give a
presentation for it with a lot of the same algebraic structure as Rc. Interestingly, it
is also the Kleisli category of PM , the composite of the finite powerset monad with
the multiset monad.

3.7.1 Powerset of multisets

The functor M : Set→ Set sends a set X to its set of multisets (or bags),

MX = {a ∈ NX with finite support} (3.126)

and a map f : X → Y to Mf : MX →MY given by

Mf ([x1, . . . , xn]) = [f(x1), . . . , f(xn)] (3.127)

We write multisets using brackets, e.g., [x, y, y, z, x] and denote multisets using bold-
face as we did for vectors with natural number coefficients. The multiset functor can
be equipped with the structure of a monad with

• multiplication µMX : MMX →MX given by

µMX
([

[x1,1, . . . , x1,n], . . . , [xn,1, . . . , xn,n]
])

= [x1,1, . . . , x1,n, . . . , xn,1, . . . , xn,n]
(3.128)
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• unit ηMX : X →MX given by ηMX (x) = [x].

It is well known that the full-subcategory of the Kleisli category of M spanned by
finite sets is equivalent to the prop MatN. This is a simple consequence of the product-
exponential adjunction, giving a bijection between maps X → NY and maps X×Y →
N. Then, fixing a total order on X and Y , we get |Y |× |X| matrices with coefficients
in N.

Proposition 79. There is a distributive law λ : MP → PM of the multiset monad
over the finite powerset monad, P , given by

λX ([A1, . . . , An]) =
{

[x1, . . . , xn] | xi ∈ Ai, 1 ≤ i ≤ n
}

(3.129)

where the Ai are subsets of X.

Proof. This distributive law is mentioned frequently in the literature but we could not
track down a first-principles proof that it is indeed a distributive law, so we give one
below for completeness. Let X be a set. Checking that λ is a natural transformation
is straightforward. We verify the commutativity of the four distributive law diagrams.

• For [x1, . . . , xn] ∈MX,

λX(MηPX)([x1, . . . , xn]) = λX
([
{x1}, . . . , {xn}

])
(3.130)

=
{

[x1, . . . , xn]
}

(3.131)

= ηPMX

(
[x1, . . . , xn]

)
(3.132)

• For {x1, . . . , xn} ⊆ X,

λXη
M
PX({x1, . . . , xn}) = λX

([
{x1, . . . , xn}

])
(3.133)

=
{

[x1], . . . , [xn]
}

(3.134)

= PηMX
(
{x1, . . . , xn}

)
(3.135)

• For Ai ⊆ PX, with 1 ≤ i ≤ n,

µPMX(PλX)λPX
(
[A1, . . . ,An]

)
(3.136)

= µPMX(PλX)
({

[A1, . . . , An] | Ai ∈ Ai, 1 ≤ i ≤ n
})

(3.137)

= µPMX

({
{[x1, . . . , xn] | xi ∈ Ai} | Ai ∈ Ai, 1 ≤ i ≤ n

})
(3.138)

=
{

[x1, . . . , xn] | xi ∈ Ai, Ai ∈ Ai, 1 ≤ i ≤ n
}

(3.139)

= λX
([⋃
A1, . . . ,

⋃
An
])

(3.140)

= λX(MµPX)
(
[A1, . . . ,An]

)
(3.141)
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• For Ai,j ⊆ X, with 1 ≤ j ≤ ki and 1 ≤ i ≤ n,

(PµMX )λMX(MλX)
([

[A1,1, . . . , A1,k1 ], . . . , [An,1, . . . , An,kn ]
])

(3.142)

= (PµMX )λMX

([
{[xi,1, . . . , xi,ki

] | xi,j ∈ Ai,j} | 1 ≤ i ≤ n
])

(3.143)

= PµMX
({[

[xi,1, . . . , xi,ki
]
]
| xi,j ∈ Ai,j, 1 ≤ i ≤ n

})
(3.144)

= {[xi,1, . . . , xi,ki
] | xi,j ∈ Ai,j, 1 ≤ i ≤ n} (3.145)

= λX
([
{x1,j | 1 ≤ j ≤ k1}, . . . {xn,j | 1 ≤ j ≤ kn}

])
(3.146)

= µMPXλX
([

[A1,1, . . . , A1,k1 ], . . . , [An,1, . . . , An,kn ]
])

(3.147)

As a result, PM is also a monad. Another way to phrase this is that the monad
M lifts to the Kleisli category of the finite powerset monad, namely the category of
sets and finitely-branching relations: we call a relation r ⊆ X × Y finitely-branching
when, for every x ∈ X, there is at most a finite number of y ∈ Y such that (x, y) ∈ r.
The monad multiplication is given by PMPM

PλM−−−→ PPMM
µPµM

−−−→ PM and the
unit by id ηP ηM

−−−→ PM .
We consider the full subcategory of the Kleisli category of PM spanned by finite

ordinals. Call its morphisms multirelations. It defines a prop which we describe
explicitly below by unrolling the definition of the Kleisli composition for PM . As
multirelations are more conveniently expressed in relational form, that is, as subsets
of k × Ml for multirelations of type k → l; we adopt this convention. We abuse
notation slightly by identifying multisets of elements of k (i.e., Mk = Nk) and vectors
of Nk. Then µ is simply the sum of vectors.

Definition 80. Let MRel be the prop in which

• morphisms k → l are finitely-branching relations k ×Ml;

• with composition defined by (i, c) ∈ f ; g iff there exists (p1, c1), . . . , (pn, cn) ∈ g
such that

n∑
i=1

ci = µMm ([c1, . . . , cn]) = c and (i, [p1, . . . , pn]) ∈ f (3.148)

for f : k → l and g : l→ m;

• identity idk = {(i, [i]) | i ∈ k};

• monoidal product f1⊕f2 : k1 +k2 → l1 + l2 of f1 : k1 → l1 and f2 : k2 → l2 given
by (i,b) ∈ f1 ⊕ f2 iff i ≤ k1 and (i,b) ∈ f1, or i > k1 and (i,b) ∈ f2;
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• braiding l
k := {((i, j), ([i], [j])) | i ∈ k, j ∈ l}.

Multirelations can be interpreted as special cases of additive relations. Morally,
the functor given on morphisms by (f : k → PMl) 7→Mf ; λMl ; PµMl is the embed-
ding we are looking for. However, this would be an abuse of notation as this functor
does not have the right type.

Unrolling the abstract definition, we obtain a prop morphism EM : MRel→ AddRel
given, in relational form, by

EMf :=
{(

n∑
i=1

epi
,
n∑
i=1

bi
)
| (pi,bi) ∈ f

}
(3.149)

for f : k → l and where {ej}1≤j≤k, are the basis vectors of Nk.

Proposition 81. EM : MRel ↪→ AddRel is a faithful prop morphism.

Proof. For unitality, EMf(idk) =
{(

n∑
i=1

epi
,
n∑
i=1

epi

)
| n ∈ N

}
which is the identity

additive relation on k.
For functoriality, let f : k → l and g : l→ p be two multirelations.

• If
(∑n

i=1 epi
,
∑n
i=1 ci

)
∈ EM(f ; g) for some n ∈ N, then (pi, ci) ∈ f ; g for

1 ≤ i ≤ n and there exists (pij, cij) ∈ g, for 1 ≤ j ≤ mi such that ∑mi
j=1 cij = ci

and
(
pi,
∑mi
j=1 epij

)
∈ f . Then, by additivity, n∑

i=1
epi
,
n∑
i=1

mi∑
j=1

epij

 ∈ EMf ; EMg (3.150)

• Conversely if (a,b) ∈ EMf ; EMg, there exists b ∈ Nl such that (a,b) ∈ EMf
and (b, c) ∈ EMg. By definition, we can decompose them as follows:

(a,b) =
(

n∑
i=1

epi
,
n∑
i=1

bi
)
∈ EMf and (b, c) =

(
m∑
i=1

eqi
,
m∑
i=1

ci
)
∈ EMg (3.151)

for some n,m, pi, qi ∈ N and bi ∈ Nl, ci ∈ Np. Note that we necessarily have
n ≤ n′ because ∑n

i=1 bi = b = ∑m
i=1 epi

and bi � epj
. Thus, we can partition

the qi, 1 ≤ i ≤ m into n classes, through a surjective map ϕ : m→ n, such that
bi = ∑

ϕ(j)=i eqj
. Hence, we have

(
pi,
∑
ϕ(j)=i ci

)
∈ f ; g and consequently,

(a, c) =
 n∑
i=1

epi
,
n∑
i=1

∑
ϕ(j)=i

ci

 ∈ EM(f ; g) (3.152)

Finally, EM is faithful. Assume that EMf = EMg for multirelations f, g : k → l.
If (i,b) ∈ f , then (ei,b) ∈ EMf = EMg and thus (i,b) ∈ g as well.
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(as)= (co)= (unl)=

(◦-coas)= (◦-coco)= (◦-counl)=

(◦-bi)= (◦-biun)= (◦-bicoun)=

(◦-sp)= (◦-bo)=

(coas)= (coco)= (counl)=

(◦•-bi)= (◦-biun)= (•-biun)= (bo)=

(•◦-bi)= (•◦-biun)=

Figure 3.3: Presentation of Pc.

Equipped with this embedding, we can transfer the concept of Hilbert basis to
multirelations in order to characterise them uniquely. The following proposition is
immediate from the explicit form of EM .

Proposition 82. Multirelations k → l are in one-to-one correspondence with additive
relations k → l whose Hilbert basis elements are all of the form (ei, a) for some basis
vector ei ∈ Nk and some arbitrary vector a ∈ Nl.

3.7.2 Presenting multirelations

We have now done enough work to derive a presentation of MRel.

Definition 83. Let Pc be the prop with presentation given in Fig. 3.3

Proposition 84. There is an embedding EPc : Pc ↪→ Rc.
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Proof. This is the unique prop morphism that sends , , and to
themselves and , to their definition in Rc (see Remark 55). It is functorial
because the axioms for , , and are also axioms of Rc; ,
, , also form a special commutative bimonoid in Rc, and the last pair of
axioms are derived equations of Rc by Lemma 67.

From the previous discussion, there are at least two different perspectives on
multirelations: one can view them as additive relations without the ability to merge
and generate resources or as relations with the additional ability to duplicate and
delete resources. This is reflected in the diagrammatic calculus. Indeed, the lack of

and prevents us from bending wires at will; MRel is not compact closed. This
allows us to transfer causal intuitions to diagrams, whose left ports are now genuine
inputs and right ports are genuine outputs.

It is instructive to contrast this behaviour with the case of linear relations. Re-
member that, in IHK, both and -structures are Frobenius monoids. Thus, any
subprop of IHK that contains and (and their respective units) inherits cups
and caps. This is exploited in [Zan15, Theorem 4.48], where the author shows that
diagrams in IHK over the field of fractions of K[x] can all be directed and interpreted
as rewirings (in a precise sense) of matrices over the ring of rationals (polynomial
fractions whose denominator has non-zero leading coefficient). These, in turn, corre-
spond to rational behaviours, for which the operational semantics of the corresponding
diagram is realised by a weighted finite-state machine.

We chose the name Pc or producer calculus because it contains the part of the
resource calculus from which one can produce more resources than one started with.
The following example illustrates how to go between multirelations and diagrams of
Pc.

Example 85. The multirelation f : 3→ 4 given by {(1, [1, 1, 1, 2, 2, 3]), (1, [2]), (2, [])}

or, in vectorial form,


1,


3
2
1
0


 ,

1,


0
1
0
0


 ,

2,


0
0
0
0



, is depicted as

(3.153)

The main theorem of this section is the following.
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Theorem 86. The categories MRel and Pc are isomorphic.

Proof. We claim that the isomorphism J− KM : Pc → MRel is the unique prop mor-
phism defined on the generating morphisms of Pc by:

J KM :=
{(

0,
(

1
1

))}
J KM := {(0, •)} (3.154)

J KM := {(0, 1), (1, 1)} J KM := {1} (3.155)

J KM :=
{(

0,
(

1
0

))
,

(
0,
(

0
1

))}
J KM := ∅ (3.156)

That J− KM is functorial is another mechanical verification of the soundness of the
equations of Pc for MRel and it is symmetric monoidal by construction. The in-
teresting part of the proof is to show that it is an isomorphism. For fullness, it is
straightforward to generalise the scheme described in Example 85 to construct a di-
agram encoding a given multirelation. Alternatively, we can reuse the method given
to translate additive relations into Rc diagrams (cf. Section 3.6): first compute the
unique additive relations EMf corresponding to a given multirelation f and then
draw the diagram for EMf . As f is a multirelation, the resulting diagram does not
contain any or , so is in the image of EPc : Pc ↪→ Rc.

For faithfulness, we can procede by a normal form argument as we have done
previously. For this, we make use of Proposition 82 to show that any diagram c of Pc
is equal to one from which the Hilbert basis of the associated additive relation can
be read unambiguously. We say that a diagram of Pc is in normal form when it is
written as

A
p lk (3.157)

where A is a matrix diagram, for some p ∈ N or, equivalently,

pk q l (3.158)

for some p, q ∈ N. In these diagrams, the boxes annotated with generators represent a
layer of arbitrary compositions and monoidal products of the corresponding generators
(including potential permutations). So the normal form corresponds to a factorisation
of diagrams in Pc into three successive layers of diagrams with restricted sets of
generators. Note that this matches the normal form of diagrams in the resource
calculus in its span version (see Remark 92 below). Diagrams of Rc are more general
and can have a layer of , in between those of , and , .
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From the normal form, we can immediately read the Hilbert basis of the associated
multirelation, as we did for Rc diagrams. Here it is easier because the prenormal and
normal form are one and the same. Indeed, as generating vectors are always of the
form (ei,b) for some basis vector ei, one of them cannot be a sum of the others and
there cannot be any redundancy in the normal form.

To prove that this factorisation exists for every diagram, we reason by structural
induction. The base cases are immediate. Below, we give an effective procedure to
rewrite c composed with every generator into normal form.

1. Co-addition on the right. We can either:

(a) encounter a , in which case

c = c′ = c′ (3.159)

for some diagram c′ and we can apply the induction hypothesis;

(b) or we are past the layer and ecounter a . Then there exists c′

such that

c = c′ = c′ (3.160)

and we can now apply the induction hypothesis.

2. Copy on the right. If we encounter a , there exists a diagram c′ such that

c = c′ = c′ (3.161)

and we can apply the induction hypothesis.

3. Copy on the left. If we encounter a , there exists a diagram c′ such that

c = c′ = c′ (3.162)

To deal with the that we have introduced in the last equation, we go to
step 4. We obtain a diagram c′′ such that

c = c′′ (3.163)
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at which point we can apply the induction hypothesis.

4. Addition on the left. We can simply apply the same steps as for 1. and 2. to
push successively through the layer of and then .

5. Delete on the right. If we encounter , there exists a diagram c′ such that

c = c′ = c′ (3.164)

We can now apply the induction hypothesis.

6. Co-zero on the right. If we encounter , there exists a diagram c′ such that

c = c′ = c′ (3.165)

Otherwise, if we encounter , there exists a diagram c′ such that

c = c′ = c′ (3.166)

and we can apply the induction hypothesis.

7. Zero on the left. If we encounter , there exists a diagram c′ such that

c = c′ = c′ (3.167)

We can now apply the induction hypothesis.

8. Co-addition on the left or addition on the right. The diagrams

c and c (3.168)

are already in normal form.

9. All the other cases involve taking the monoidal product of c with a generator
and we can therefore apply the induction hypothesis without any rewriting.
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3.7.3 Multirelations and linear logic

MRel is intimately related to a well-known model of linear logic. We do not wish to
introduce the topic of linear logic here but simply to point out that Pc provides a
diagrammatic calculus for a simple model of its multiplicative exponential fragment.

We pointed out earlier that, because of the existence of the distributive law
λ : MP → PM , M lifts to the Kleisli category of P , namely the category of sets
and finite-branching relations. Let us call ? : Rel→ Rel this lifting. Remarkably, the
same functor over Rel also admits the structure of a comonad obtained by simply
transposing the two natural transformations µ? and η?. To distinguish these two dif-
ferent structures, we will write ! for the comonad, as is standard in the linear logic
literature.

The relational model is one of the simplest categorical models of classical linear
logic [Sch04]. It is given by interpreting the logic into Rel!, the coKleisli category of
the multiset comonad which we describe more explicitly below: it has

• finite sets X, Y, . . . as objects;

• relations !X 9 Y as morphisms X → Y ;

• the relation {([x], x) | x ∈ X} as identity 1X ;

• composition defined by (a, z) ∈ r ; s iff

∃(a1, y1), . . . , (an, yn) ∈ r such that a =
n∑
i=1

ai and ([y1, . . . , yn], z) ∈ s (3.169)

for r : X → Y and s : Y → Z.

The category Rel! is Cartesian closed with the disjoint sum as categorical product
and X ⇒ Y := !X × Y as exponential. It turns out that this category is equivalent
to MRelop.

Proposition 87. MRelop is monoidally equivalent to Rel!

Proof. There is a sequence of monoidal natural isomorphisms:

MRelop(k, l) = MRel(l, k) ∼= Rel(l, ?k) ∼= Rel(!k, l) ∼= Rel!(k, l) (3.170)

where the third one is a consequence of the fact that Rel is self-dual, by transposition.
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3.8 Instructive failures: towards a modular account
of additive relations

In [BSZ17, Zan15] the authors construct the prop of linear relations in a modular way:
using simpler props with known presentations as building blocks and distributive laws
to combine them, they obtain a presentation for LinRelK. Unfortunately, none of their
methods apply directly to the case of additive relations. Nonetheless, we believe that
it is useful to identify some of the obstructions more precisely, so that we may one day
develop new methods for composing props and eventually obtain a modular account of
AddRel and its presentation. This section is a high-level discussion of where the usual
approach fails. Someone reading the present work might even find enough inspiration
for a solution to this problem.

Props can be seen as monads in a 2-category of bimodules over spans of monoids,
as first observed in [Lac04]. Because they are monads, they can be composed via
distributive laws. The distributive laws in [Zan15] come from the interaction of the
prop MatR of matrices over a PID R, with its dual, MatopR . As we do not need them, we
will not introduce distributive laws of props formally in this thesis. Instead, we refer
the reader to [Zan15, Section 2.4] or directly to Lack’s original account in [Lac04].
Intuitively, distributive laws of props specify how to slide the morphisms of two props
past each other. This allows them to be combined into a new prop. They naturally
induce a functorial factorisation of morphisms and are closely related to factorisation
systems. They are particularly useful to derive complete sets of equations for the
resulting prop.

First, notice that MatR is finitely complete so it has pullbacks. Therefore, we can
form its category of spans, whose objects are the same and whose morphisms are pairs
of matrices k → p← l3.

Two spans with a common foot can be composed by pullback:

p+l q
U

||

V

""
p

A

}}

B

""

q
C

||

D

!!
k l m

(3.171)

3Spans more naturally form a bicategory and the 1-category we describe is its truncation. There-
fore, it would be more correct to say that its morphisms are isomorphism classes of spans. Since we
do not use spans in any fundamental way, we stay slightly imprecise.
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A span of matrices is the same thing as a pair from MatR × MatopR . And, when
composing two spans via pullback, the two morphisms pointing the wrong way (form-
ing a cospan) in the middle are turned into a span. This operation is functorial and
defines a distributive law.

The next key idea is that, given a presentation for MatR (and therefore, of its dual
as well) we only need to find a presentation of the additional equations coming from
the distributive law given by pullbacks. These equations describe the different ways
of sliding matrices and their opposites past each other. This produces a local view of
the prop of spans in which the equational theory can be reduced to a complete set of
basic interactions between the generators of MatR and MatopR .

A completely analogous procedure yields a presentation of the prop of cospans of
matrices, whose morphisms are now pairs of matrices of type k ← p → l, composed
via pushout.

Finally, it turns out that linear relations can be constructed as a colimit of the
categories of spans and cospans of matrices, gluing them in the appropriate way. The
same operation at the level of the presentations provides a presentation of LinRelK.
The colimit can be understood as the result of choosing a well-behaved notion of
image in the original category of matrices and identifying all spans with the same
image. For a regular category, there is a canonical way to define a suitably functorial
notion of image: the regular epimorphisms with the monomorphisms form the left
and right class of a factorisation system so that every morphism can be factored
uniquely—up to isomorphism—through its image.

There are two fundamental obstacles to applying the method above to derive a
presentation for AddRel: i) MatN does not have pullbacks nor pushouts and ii) the no-
tion of image associated with an additive relation does not give rise to a factorisation
system in MatN. We explain both points below.

Remark 88. In general, reasoning equationally about additive relations is harder
than about linear relations. The graphical calculus for linear relations is fundamen-
tally undirected as both and -structures are Frobenius monoids for which the spider
theorem (Theorem 18) holds. This theorem allows us to forget a lot of the structure
of monochromatic diagrams to focus on the relation between and using the bi-
monoid laws. For additive relations, the presence of a second bimonoid requires some
additional care. In particular it requires more effort to keep track of the causal flow
through -nodes. In addition, the cancellativity axiom of Rc is of a less local flavour
than any of the axioms of IHK, creating new difficulties, as we saw in the rewriting
procedure of Section 3.6.1. However, it is not clear how the complexity of diagram
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rewriting and the construction of a prop using distributive laws are related. This is
an active area of research.

First, recall that MatN is equivalent to the Kleisli category of the multiset monad
M . On the other hand, the category of algebras of M is equivalent to the category of
commutative monoids, CMon. For any monad its Kleisli category is a full subcategory
of its category of algebras so we have an embedding e : MatN ↪→ CMon.

3.8.1 Weak pullbacks

The results of this section were first noticed in [Sob13]—we fill out the missing details
in the proofs below.

Theorem 89. MatN does not have pullbacks.

In general, to show that certain limits do not exist in a given category C, we
can embed C in a larger category and show that the limit of the relevant diagram lies
outside of the essential image of the embedding. This works because limits are unique
up to isomorphism. Here we apply this technique using the embedding e : MatN ↪→
CMon. As CMon is a category of algebras for a monad over Set, limits exist and can
be computed as in Set. In particular, the pullback of two monoid homomorphisms
f : X → Z and g : Y → Z is the set

Tf,g = {(x, y) ∈ X × Y | f(x) = g(y)} (3.172)

with commutative monoid operation inherited from X × Y . As with Definition 52,
let us call this the monoid of transactions of f and g. The following is just the
reformulation of Lemma 53.

Lemma 90. For any two matrices A : k → m and B : l → m, TeA,eB is an additive
monoid.

Now we are equipped to prove that pullbacks do not exist in MatN.

Proof of Theorem 89. Consider the matrix A : 2 → 1, A =
(
1 1

)
. Then TeA,eA is

generated by the minimal transactions{((
0
1

)
,

(
0
1

))
,

((
1
0

)
,

(
0
1

))
,

((
0
1

)
,

(
1
0

))
,

((
1
0

)
,

(
1
0

))}
. (3.173)

This monoid is not isomorphic to a free monoid since, for example,((
1
1

)
,

(
1
1

))
=
((

0
1

)
,

(
0
1

))
+
((

1
0

)
,

(
1
0

))
(3.174)
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=
((

1
0

)
,

(
0
1

))
+
((

0
1

)
,

(
1
0

))
(3.175)

Therefore, this pullback does not lie in the image of e and MatN does not have
pullbacks.

Conceptually, pullbacks do not exist in MatN because the matrix that should
satisfy the corresponding universal property is not necessarily unique. However, note
that it always exists, hence the appellation “weak”.

Proposition 91. MatN admits weak pullbacks: for every pair of matrices A : m→ k

and B : m→ l, there exists p and Pk : p→ k and Pl : p→ l such that

p
Pk

��

Pl

��
k

A
  

l

B
��

m

(3.176)

commutes and, for every pair of matrices M : q → k and N : q → l such that MA =
NB, there exists a (not necessarily unique) matrix U : q → p such that

q

M

��

N

��

U

��
p

Pk��
Pl

��
k

A
  

l

B
��

m

(3.177)

commutes.

Proof. Given M and N as in the statement of the proposition, AMa = BNa by
assumption and therefore (Ma, Na) is an element of TeA,eB for every a ∈ Nq. Let
(b1, c1), . . . , (bp, cp) be the minimal transactions (there is a finite number of them by
Dickson’s lemma); let Pk and Pl be the projection matrices that send a transaction
to its left and right component respectively. By Lemma 53, every transaction can
be obtained as a linear combination of minimal transactions, so we can define U

by first choosing a decomposition of (Ma, Na) into minimal elements of TeA,eB, say∑p
i=1 ni(bi, ci), for every a ∈ Nq. Then, let U(a) = ∑p

i=1 niei, for {ei}1≤i≤p the
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basis vectors of Np. This mapping is not uniquely defined because there may be
several decompositions of each (Ma, Na) into minimal transactions but any choice of
decomposition makes the relevant diagram commute.

Remark 92. Weak pullbacks are not sufficient to define a category of spans of natural
number matrices. We can attempt to compose such spans via weak pullbacks, but
the composition is not associative, for the same reason that maps into the apex of a
weak pullback are not uniquely defined by their projections, see [Sob13].

When proving that finitely generated additive relations compose (Proposition 51)
we also used Dickson’s lemma (packaged in Lemma 53). This is not a coincidence: the
composition of additive relations works by taking the weak pullback. Indeed, since
MatN has (bi)products, matrices A : d→ k + l are in one-to-one correspondence with
pairs of matrices Ak : d→ k and Al : d→ l, i.e., spans k ← d→ l. Given two additive
relations R : k → l and S : l→ m with respective representing matrices A : d→ k+ l

and B : e→ l +m, we can form the weak pullback d M←− p
N−→ e in

p
M

��

N

��
d

Ak

��

Al

��

e
Bl

��

Bm

��
k l m

(3.178)

to obtain a representing matrix
(
AkM
BmN

)
for R ; S. This process is simply a reformu-

lation of the proof of Proposition 51 in more conceptual terms. At the diagrammatic
level, we can also see the correspondence with the pre-normal form for Rc diagrams:
it can be seen as representing additive relations as spans of matrices. Indeed, since
MatN is Cartesian, there exists Ak and Al such that

A
l

k

p

=
Al

l

Ak
k

d

= Al
l

A†k
k d (3.179)

Then, weak pullbacks are a recipe to compose two Rc diagrams in span form, sliding
the middle cospan into a span:

Al
l

A†k
k p

B†l
q m
Bm = M † p

A†k
k d

N
e m
Bm (3.180)

where d† represents the transpose of a diagram.
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3.8.2 Minimal images

From the weak pullback, we can obtain a representing span of the composite relation
R;S, given representing spans for R and S. However the set of minimal transactions
may contain a lot of unnecessary information. In the composition of additive relations,
the weak pullback is only the first step: it is followed by a factorisation step that
discards all redundant transactions. In the composition of A =

(
Ak
Al

)
: p→ k+ l with

B =
(
Bl
Bm

)
: q → l + m, seen as spans, the factorisation step discards all minimal

transactions (c,d) of Al and Bk, such that there exists minimal transaction (ei, fi)
with Akx = ∑n

i=1 Akei and Bmy = ∑n
i=1 Bmfi. We call such transactions redundant.

For relations over a regular category, this is done by factoring a span through its
image. Here, the notion of image that we are looking for is not as well-behaved.

Definition 93. A functorial factorisation system for a category C is a pair (M, E)
of collections of morphisms of C such that

• M and E contain all isomorphisms of C;

• every morphism f of C factors as f = e;m, with m in M and e in E ;

• this factorisation is functorial: given f, f ′ with factorisations f = e;m and
f ′ = e′;m′, for every u and v verifying f ; v = u; f ′ there exists a unique q such
that

e //

u

��

m //

∃!q
��

v

��

e′
//

m′
//

(3.181)

commutes.

For R a PID, MatR is regular and admits a well-behaved notion of image given by
the (strong epimorphisms, monomorphims) factorisation system. MatN is not regular
but we would like the image of a matrix A : k → l to be the set ImA := {b ∈ Nl |
∃a ∈ Nk, Aa = b}. The following is immediate.

Proposition 94. For a matrix A : k → l, ImA is an additive monoid.

The problem is that not every image in this sense is the image of a monomorphism.
Monomorphisms are too rigid, as the following example demonstrates.
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Example 95. Let S be the additive monoid generated by
{(

2
0

)
,

(
1
1

)
,

(
0
1

)}
. We

claim that it is not the image of a monomorphism. Assume that there exist a matrix
A : k → 2 such that ImA = 〈G〉. We will derive a contradiction.

By hypothesis, the images of the canonical basis vectors of Nk generate S and(
2
0

)
,

(
1
1

)
and

(
0
1

)
are independent, so there exists three basis vectors e1, e2 and e3

such that
Ae1 =

(
2
0

)
, Ae2 =

(
1
1

)
, Ae3 =

(
0
1

)
. (3.182)

Since
(

2
2

)
= 2

(
1
1

)
=
(

2
0

)
+ 2

(
0
1

)
, there would also be d ∈ N3 such that

Ad =
(

2
2

)
. Therefore we would have Ad = A(2e2) = A(e1 + 2e3) and, because A is

a monomorphism, 2e2 = e1 + 2e3. But the ei, 1 ≤ i ≤ 3 are basis vectors so this is
impossible.

The right notion of image is given by the collection of minimal matrices.

Definition 96. We call a matrix minimal when its columns are independent.

Call Min the collection of minimal matrices in MatN. Minimal matrices are a not
necessarily monomorphisms but they correspond uniquely to images in MatN.

Lemma 97. Every N-matrix factors as a split epimorphism followed by a minimal
matrix. Furthermore, the latter is unique (up to isomorphism).

Proof. For every matrix A : k → l, the set ImA is an additive monoid and therefore
admits a Hilbert basis, by Theorem 46. Let B = {ei}1≤i≤k be the canonical basis
of Nk. Since {f(ei), 1 ≤ i ≤ k} is a generating set of ImA, there exists a subset
H = {ei1 , . . . , eih} of B such that {Aei1 , . . . Aeih} is the Hilbert basis of ImA. Define
the matrix M : h → k to be restriction of A to the subspace spanned by H. It is
clear that M is minimal by construction.

In addition, if H is a Hilbert basis for ImA, it means that, for every element
of ej ∈ B there exists a decomposition Aej = ∑h

n=1 pnAein . If we fix one such
decomposition for each ej ∈ B, we obtain a matrix E : k → h. Moreover, E is a split
epimorphism with the inclusion of H into B as section, extended by linearity. Thus
we have A = ME as we wanted.

Finally for unicity, suppose thatA factors through another minimal matrixM ′ : h′ →
l. Since the Hilbert basis is unique, we can exhibit an isomorphism h′ → h by sending
e′i to ej if Ae′i = Aej and extending by linearity.
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Unfortunately, minimal matrices do not correspond to any of the usual categorical
concepts of images.

Proposition 98. Min cannot be the right class of a factorisation system containing
split epimorphisms in MatN.

Proof. Consider the following counter-example:

4 14 //

A
��

4
A
��

2

(3.183)

where A is given by

A =
(

0 2 1 2
1 0 1 2

)
(3.184)

First note that A
(
0, 0, 0, 1

)T
can be decomposed in two different ways:

A


0
0
0
1

 =
(

2
2

)
= 2A


0
0
1
0

 = 2A


1
0
0
0

+ A


0
1
0
0

 (3.185)

So A is not minimal. The setA


1
0
0
0

 , A


0
1
0
0

 , A


0
0
1
0


 =

{(
0
1

)
,

(
2
0

)
,

(
1
1

)}

is the Hilbert basis of ImA. As a result, we can factor A into a pair of a split
epimorphism and minimal morphism M in two different ways. Let E,E ′ : 4 → 3 be
given by

E =

1 0 0 2
0 1 0 1
0 0 1 0

 (3.186)

and

E ′ =

1 0 0 0
0 1 0 0
0 0 1 2

 (3.187)

Then we need to find a unique map such that the square in the following diagram
commutes:

4 14 //

E
��

4
E′

��

3 ? //

M
��

3

M
��

2

(3.188)
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But this is impossible by construction of E and E ′. To see this imagine there exists

such a map B : 3→ 3. Then BE


0
0
0
1

 =

0
0
2

 which means that B

2
1
0

 =

0
0
2

. But

B

2
1
0

 = 2B

1
0
0

+B

0
1
0

 = 2BE


1
0
0
0

+BE


0
1
0
0

 (3.189)

= 2E ′


1
0
0
0

+ E ′


0
1
0
0

 =

2
1
0

 (3.190)

so we have a contradiction.

Minimal matrices are not closed under composition either.

Proposition 99. Min is not a subcategory of MatN.

Proof. The following counter-example suffices see that minimal maps do not compose:
let A : 2→ 2 and B : 2→ 1 be the two matrices

A =
(

0 2
3 0

)
B =

(
3 2

)
(3.191)

They are minimal but BA
(

1
0

)
= 6 = BA

(
0
1

)
.

Remark 100. If the minimal image has precisely the right granularity to obtain
additive relations from spans of matrices, it is not the only notion of image from
which we can obtain an associative composition. In [Sob13, Section 5], the author
considers a prop InjSpanN of jointly-injective spans of matrices. Here, a matrix k → l

is said to be injective if its associated map k → Nl is injective in Set. Injective maps,
along with surjective maps, form a suitable factorisation system in Set. Such jointly-
injective spans can then be composed via weak pullback followed by a factorisation
step and this composition is associative [Sob13, Section 5, Proposition 1].

For a matrixA : k → l, the corresponding Set map k → Nl is injective iffAei = Aej
implies i = j, for {ei}1≤i≤k the canonical basis of Nk. Clearly, minimal maps are
injective in this sense but injective maps are not necessarily minimal.

In the composition of A =
(
Ak
Al

)
: p→ k+l with B =

(
Bl
Bm

)
: q → l+m in InjSpanN,

the factorisation step identifies all minimal transactions (x,y) and (x′,y′) of Al and
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Bk such that Akx = Akx′ and Bmy = Bmy′. Call such transactions indistinguishable.
This should be contrasted with factoring through the minimal image—a process that
discards redundant minimal transactions. Clearly indistinguishable transactions are
redundant but the converse if not true. Therefore, composition in InjSpanN retains
more information about A and B.

As a result, there is a prop morphism Dis : InjSpanN → AddRel, that associates

Dis(A) := {(a,b) | ∃x ∈ Np, (a,b) = (Akx, Alx)} (3.192)

to A =
(
Ak
Al

)
: p→ k+ l. This is functorial because composition via weak pullback is

sound for AddRel, by Remark 92.

3.8.3 AddRel is almost a category of relations

Even if minimal matrices do not give rise to a well-behaved notion of image in MatN,
it is possible to identify AddRel as a subcategory of a category of relations over a
regular category, namely that of relations over the category of commutative monoids.
Let us explain this further.

CMon is regular so we can form the category of relations over it—call it Rel(CMon):
a relation M → N is a monomorphism R ↪→ M × N . Recall that monomorphisms
of commutative monoids are injective monoid homomorphisms. If M and N are free
and finitely generated, it means that they are isomorphic to some Nd for some integer
d ≥ 0, and so is their product. It follows immediately that the full subcategory of
Rel(CMon) on finitely generated free monoids is (not necessarily finitely generated)
that of (not necessarily finitely generated) additive relations. And finally, the sub-
category of those that are finitely generated is equivalent to AddRel!

Finally, if CMon is finitely (co)complete, we can consider the category of spans of
commutative monoids, Span(CMon) and, in particular its full subcategory on the free
monoids, SpanM(CMon). Note that, in the latter category, the apex of the span can
be a non-free monoid (otherwise, as we have seen, spans of homomorphisms of free
monoids, a.k.a spans of matrices, do not form a category). Furthermore, according to
[RGS99, Theorem 3.11], additive monoids are exactly the finitely generated, nonneg-
ative, cancellative and torsion-free commutative monoids. And all of these properties
are preserved by pullbacks so that we can consider the subcategory of Span(CMon)
whose objects are the finitely generated free monoids and whose morphisms are spans
with an additive monoid as apex. We conjecture that this smc is equivalent to a prop
whose presentation is the same as that of Rc, without the special law of the Frobenius
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monoid. This fact might help to build a modular account of AddRel but we leave its
proof for future work.
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Chapter 4

Picturing resources in stateless
concurrency

While the resource calculus is a rudimentary coordination language that can express
basic forms of synchronisation and nondeterminism, there are many non-additive phe-
nomena in concurrency for which it is not sufficiently expressive. One notable example
is that of mutual exclusion. Mutual exclusion [Dij65], one of the most influential syn-
chronisation mechanisms, guarantees that two or more processes are prevented from
accessing a given resource at the same time. It represents an inhibitory pattern of
interaction and is used, for example, to prevent race-conditions in shared memory
infrastructures. Numerous protocols and even hardware-assisted constructs such as
compare-and-swap have been invented to enforce this property.

In this chapter, we extend the resource calculus to account for mutual exclusion
and more general forms of inhibitory behaviour. The surprising fact is that these
synchronisation mechanisms are all revealed to be instances of affine phenomena.
Affine algebra (and geometry) is perhaps better known to the reader as linear algebra
over a field where one forgot the origin. As we will see, it is possible to introduce
similar notions over N. The key is being able to express a constant quantity of
resources different from zero, leading to the affine resource calculus. In fact, it is
sufficient to have access to the constant 1, that we will depict as the following 0→ 1
diagram:

(4.1)

A remarkable property of the resource calculus is that it captures the order on N.
Specifically, the following diagram forces the value observed on the right to be greater
than that on the right:

r z
= {(n,m) | ∃k ∈ N, n+ k = m} = {(n,m) | n ≤ m} (4.2)
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Combining this diagram with the affine constant , we can easily derive a connector
denoting mutual exclusion. First, using , we can define a wire whose bandwidth is
≤ 1, i.e., that can only carry 0 or 1:

:= (4.3)

Then, mutual exclusion can be obtained as the composition of with ,
whose denotation is the following relation:{((

n
m

)
, n+m

)
| n+m ≤ 1

}
=
{((

0
0

)
, 0
)
,

((
0
1

)
, 1
)
,

((
1
0

)
, 1
)}

(4.4)

This captures the desired behaviour: the two wires on the right cannot be activated
simultaneously. Characterising the sort of relations that this new syntax allows us to
express as well as deriving a sound and complete equational theory for it is the task
of this chapter.

We start with a preparatory section showing how the usual graphical calculus for
matrices can be extended with a single constant and two equations to obtain a sound
and complete calculus for affine maps (Section 4.1). Following this simple result, we
tackle the more intricate case of extending the syntax of the whole resource calculus
with the same affine constant. Once again, we characterise its semantics—in terms of
so-called polyhedral relations (Section 4.2)–and exhibit a presentation for it (Section
4.3). Finally, as a case study, we show how the calculus of stateless connectors, an
existing coordination language for the design and specification of distributed systems,
embeds naturally into our syntax (Section 4.4).

Remark 101. The results of Section 4.3 were formulated and proved in collaboration
with Filippo Bonchi, Pawe l Sobociński and Fabio Zanasi. The author is also indebted
to Josh Holland for noticing that a first version of the affine resource calculus was
incomplete. Finally Filippo Bonchi suggested the encoding of the stateless connectors
appearing in Section 4.4 to the author.

4.1 From linear to affine maps

In this section, we define a prop of affine transformations over a semiring R and show
how to obtain a presentation for it. We will assume that the additive operation of R is
cancellative, as it is necessary to derive a normal form for affine maps from Theorem
103.
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Definition 102. A map f : Rk → Rl is affine if there exists a m × n matrix A and
b ∈ Rl such that

f(x) = Ax + b

for all x ∈ Rk. We call the pair (A,b) the representation of f .

The next theorem is key to lift the normal form for the prop of matrices to that
of affine maps.

Theorem 103. The representation of an affine map is unique.

Proof. Assume that (A,b) and (A′,b′) are representations for an affine map f . First,
f(0) = A0 + b = b and for the same reason f(0) = b′ so b = b′. Now, f(x) =
Ax + b = A′x + b and, by cancellativity of R, Ax = A′x for all x ∈ Rk. Evaluating
at the elements of the canonical basis of Rk, we conclude that A = A′.

We can now identify affine maps with their representation and will write (A,b)
directly for the map it represents.

Proposition 104. For (A,b) : k → l and (A′,b′) : l→ m,

(A,b) ; (A′,b′) = A′Ax + (A′b + b′)

Proof. For all x ∈ Rk, A′(Ax + b) + b′ = A′Ax + (A′b + b′)

Corollary 105. The composition of two affine maps is affine.

We can thus define a prop of affine transformations.

Definition 106. Let Aff be the prop with

• affine transformations Rk → Rl as morphisms k → l;

• composition given by function composition (or–which is the same–by the for-
mula of Proposition 104);

• the monoidal product of two affine maps given by
(
A1 ⊕ A2,

(
b1
b2

))
for (A1,b1) : k1 →

l1 and (A2,b2) : k2 → l2.

Using the graphical calculus for matrices, we can represent affine maps as pairs of
diagrams, (

A
lk , b l

)
(4.5)
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with composition depicted by A
lk
A′

m
,

b l
A′

m

b′

 (4.6)

and monoidal product given by A1
l1k1

l2A2
k2

,
b1

b2

l1

l2

 (4.7)

Theorem 107. Aff is Cartesian.

Proof. Let (A,b) : k → l and (C,d) : k → m be two affine maps. Let

〈(A,b), (C,d)〉 =
((

A
C

)
,

(
b
d

))
(4.8)

with projections as in MatR for each component. Clearly, for the same reason as in
MatR, the following diagram commutes:

k

p+m

p m

(A,b) (C,d)

((
A

C

)
,

(
b

d

))

(π1,π1) (π2,π2)

(4.9)

Moreover, it satisfies the universal property of the product for the same reason that
the direct sum is a categorical product in MatN (it is sufficient to compose the resulting
map with the usual projections to show uniqueness).

Homogenisation. Linear maps are affine but, in general, affine maps are not linear.
However there is a simple procedure to obtain a linear map from an affine map by
introducing a dummy variable. It is a well-known technique of affine and convex
geometry.

Definition 108. Let (A,b) : k → l be an affine map. The homogenisation of (A,b)
is the matrix Lf : k + 1→ l + 1 defined by

L(A,b) =
(
A b
0 1

)
=

A

b

k

l

(4.10)
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Proposition 109. L : AffR → MatR is an oplax monoidal functor.

Proof. L is defined on objects by Lk = k + 1. That L is functorial follows from

L(A′,b′)L(A,b) =
(
A′ b′
0 1

)(
A b
0 1

)
=
(
A′A A′b + b′

0 1

)
= (A,b) ; (A′,b′) and

L(idk,0) = idk+1. In addition, L is oplax monoidal with the natural transformations

φk,l : k + l + 1 → k + 1 + l + 1 given by φk,l

x
y
r

 =


x
r
y
r

 and φ0 : 1 → 0, for r ∈ R,

the only possible such linear map.

In fact, the categorically inclined reader may recognise this construction as an
adjunction. Let us flesh out this claim. Firstly, note that there is a forgetful functor
U : MatR → AffR that takes a matrix to the affine map represented by (A,0).

Proposition 110. L : AffR → MatR is left adjoint to U .

Proof. We construct a natural bijection

MatR(k + 1, l) ∼= AffR(k, l) (4.11)

Let f : MatR(k + 1, l)→ AffR(k, l) be defined by f
(
A
b

)
= (A,b) and g : AffR(k, l)→

MatR(k + 1, l) defined by g(A,b) =
(
A
b

)
. These maps are clearly inverses to each

other and natural in both variables.

In graphical terms, the adjunction is witnessed by the following bijections:
k

A
l 7→

( k

A
l , A

l
)

(4.12)

(
A

lk , b l
)
7→

A

b

k

l (4.13)

which are one-to-one since
k

A
l

A

(Lemma 66)=

k

A
l (un)=

k

A
l (4.14)

A

b

k

l =
A

k

l (un)= A
lk (4.15)
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A

b

k

l =
b

l (un)= b l (4.16)

Every adjunction induces a monad and a comonad. We are interested in the lat-
ter, whose underlying functor LU is just (−) + 1: MatR → MatR, with counit and
comultiplication given by the linear maps

ιk : Rk+1 → Rk, ιk
(

x
r

)
= x and δk : Rk+1 → Rk+2, δk

(
x
r

)
=

x
r
r

 (4.17)

Or, graphically,

ιk =
k

and δk =
k

(4.18)

Intuitively, the counit deletes the additional component and the comultiplication
duplicates it. This is the infrastructure that takes care of the book-keeping required
by the extra wire of the homogenisation construction. This is best illustrated by the
coKleisli composition of A : k + 1→ l and A′ : l + 1→ m:

k
A

A′
l

l (4.19)

Proposition 111. AffR is isomorphic to the coKleisli category of LU .

Proof. Let MatLUR be the coKleisli category of LU . The maps realising the homset
bijection of Proposition 110 extend to strict monoidal functors MatLUR → AffR and
AffR → MatLUR that are inverses of each other.

4.1.1 Presenting affine transformations

Homogenisation means, roughly speaking, that affine maps can be thought of as
matrices with an extra dangling wire for the additional dimension.

In the diagrammatic syntax, we need to introduce a formal notation for these
dangling wires. To this effect, we introduce a new generator that we interpret as
the constant 1. We need to find the right equations to axiomatise its behaviour. Let
U be the free prop on the single generator and no equations.

The characterisation of AffR as the coKleisli category of (−) + 1 suggests that we
should quotient MatR + U with two additional equations:

= (dup)
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= (del)

These equations say that can be deleted and copied by the comonoid structure, just
like . This is because several hanging wires represent the same extra dimension. It
can be understood as the axiomatic counterpart of the coKleisli composition depicted
in equation (4.27).

Let us prove that this is enough. Call AcR the prop MatR + U quotiented by
(dup) and (del); IR : AcR → AffR given by extending the prop morphism BiR → MatR

of Theorem 63 with IR( ) := 1. Checking functoriality amounts to verifying the

soundness of the additional two equations:
(

1
1

)
1 =

(
1
1

)
and

(
0
)

1 = 0.

Theorem 112. IR : AcR → AffR is an isomorphism of props.

Proof. First, IR is full since the affine map with representation (A,b) is the image of
the diagram

A
l

k

b
(4.20)

identifying A, b and their diagrams in BiR (cf. Theorem 63).
Secondly, IR is faithful. To prove this, let d be a diagram in AcR. Using the

naturality of the symmetric monoidal structure, we can write d as

d
lk = c

lk

(4.21)

for some matrix c, i.e., a diagram in the image of the embedding BiR ↪→ AcR. Then,

d
lk (dup)= c

lk

= c′
lk

(4.22)

for c′ the diagram in the dotted box. Finally we can find matrix diagrams b : 1→ m

and A : n→ m such that

d
lk =

A
l

k

b
(4.23)

By Theorems 103 and 63, this form uniquely characterises the corresponding affine
transformation.
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4.2 Polyhedral relations

4.2.1 Discrete polyhedra

We now define the affine (or inhomogeneous) counterpart of additive monoids. This
notion is not standard and we are not aware of any existing reference for it.

First some notation: let

P (B,D) =
⋃

b∈B

{
b + 〈D〉

}
. (4.24)

We say that this set is the polyhedron generated by B,D ⊆ Nd. Elements of B are
called base points and those of D directions.

Definition 113. A discrete polyhedron is a set Q ⊆ Nd for which there exist finite
B,D ⊆ Nd such that Q = P (B,D).

If B = {a} is a singleton, Q = P (B,D) is simply the translation of an additive
monoid by a); if B = {0}, Q is an additive monoid. Thus every additive monoid Q

is a polyhedron: take B = {0} and D to be a generating set of Q. A polyhedron can
be seen as a finite union of translated additive monoids.

Example 114. As for additive monoids, we can plot polyhedra in the lattice Nd. For
example, the two discrete polyhedra P ({(2, 2), (4, 2)}, {(3, 1), (1, 2)}) and P ({(1, 2)},
{(4, 1), (2, 2), (1, 3)}) can be plotted in the plane, respectively as:

Note that every finite subset S of Nd is also polyhedral (by setting B = S and
D = {0}). Finally, ∅ is polyhedral (e.g. by taking B = ∅) but not additive.

Homogenisation. As for polyhedra and cones in R, many facts about discrete
polyhedra can be deduced from their homogenenous counterparts, namely additive
monoids. In this paragraph, we present a version of the homogenisation construction
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for discrete polyhedra that will allow us to relate the two notions systematically. In
particular, homogenisation will allow us to adapt the normal form from Section 3.6
to a normal form for polyhedral relations, and to derive the completeness of the
equational theory given below, in Section 4.3. As before, we can associate an additive
monoid to every discrete polyhedron in a canonical way by embedding it into a lattice
with an additional dimension. For a set X ⊆ Nd, let

X1 =
{(

1
a

)
| a ∈ X

}
⊆ Nd+1 and X0 =

{(
0
a

)
| a ∈ X

}
⊆ Nd+1 (4.25)

Definition 115. Let Q = P (B,D) ⊆ Nd. Its homogenisation is the additive monoid
Q̂ defined by Q̂ =

〈
B1 ∪D0

〉
.

The homogenisation satisfies the following immediate property.

Lemma 116. For a discrete polyhedron Q, a ∈ Q if and only if
(

1
a

)
∈ Q̂.

Using Theorem 46 we can eliminate redundancy in B1 ∪D0 to find the Hilbert basis
H(Q̂). This characterises Q (not just Q̂) uniquely as long as it is nonempty.

Corollary 117. Given nonempty polyhedral relations Q and Q′, Q = Q′ iff Q̂ and
Q̂′ have the same Hilbert basis.

Proof. A consequence of the uniqueness of the Hilbert basis (Theorem 46) and of
Lemma 116.

4.2.2 The prop of polyhedral relations

As before, we can identify subsets of Nk×Nl with those of Nk+l through the canonical
isomorphism.

Definition 118. A polyhedral relation R : k → l is a discrete polyhedron R ⊆ Nk×Nl.

Next we focus on the sub-prop PolyRel of RelN with polyhedral relations as mor-
phisms. For this to make sense, we need to prove that polyhedral relations are closed
under composition and monoidal product, just as we did for additive relations in Sec-
tion 3.3. Closure under monoidal product is straightforward. To prove closure under
composition, we want to combine Proposition 51 with the homogenisation procedure.
First, we need to choose whether the additional dimension is in the domain or the
codomain—we choose the former to coincide with the coKleisli composition of the
previous section.
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But if R : k → l and S : l → p are polyhedral relations, we cannot compose their
homogenisations R̂ : k+ 1→ l and Ŝ : l+ 1→ p in AddRel, because the types do not
match.

Following the same reasoning as for affine maps, we can interpret the homogenisa-
tion construction as embedding polyhedral relations into a subcategory of the coKleisli
category of the comonad whose underlying functor is (−)+1 : AddRel→ AddRel, with
structural natural transformations δ : (−) + 1→ (−) + 2 and ι : (−) + 1→ id:

µk =
k

and εk =
k

(4.26)

The monad laws are an immediate consequence of the comonoid equations for .
As before, for R : k + 1 → l and S : l + 1 → p two additive relations, their coKleisli
composition R ;̂S can be represented in Rc as

k
R

S
p

l

(4.27)

We are now equipped to prove the following key property.

Proposition 119. The composition of two polyhedral relations is a polyhedral rela-
tion.

Proof. Let R : k → l and S : l→ m be polyhedral relations and R;S their composite.
We can obtain the base points and directions of R;S from the Hilbert basis H of the
additive relation R̂ ;̂ Ŝ.

If (a, c) ∈ R;S, there exists b ∈ Nk such that (a,b) ∈ R and (b, c) ∈ S. So((
1
a

)
,b
)
∈ R̂ and

((
1
b

)
, c
)
∈ Ŝ and therefore

((
1
a

)
, c
)
∈ R̂ ;̂ Ŝ. We can decom-

pose this last pair into a weighted sum of elements of H:((
1
a

)
, c
)

=
((

1
f

)
,g
)

+
m∑
i=1

pi

((
0
di

)
, ei
)

(4.28)

where ((
1
f

)
,g
)
,

((
0
di

)
, ei
)
∈ H and pi ∈ N for all 1 ≤ i ≤ m ∈ N. (4.29)

Then,
(a, c) = (f ,g) +

m∑
i=1

pi(di, ei). (4.30)

Therefore, since (a, c) was arbitrary, we conclude that R;S = P (B,D), with

B =
{

(f ,g) |
((

1
f

)
,g
)
∈ H

}
and D =

{
(d, e) |

((
0
d

)
, e
)
∈ H

}
. (4.31)
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4.3 The affine resource calculus

What follows is the axiomatic counterpart of homogenisation for polyhedral relations.
As for affine maps, homogenisation involves keeping track of an extra wire. We use
the same generator to plug this wire, obtaining a diagram for a polyhedral relation
R with homogenisation R̂:

R̂
lk

(4.32)

For the axiomatisation, homogenisation means that the equational theory of Fig-
ure 3.1 does most of the heavy lifting. Indeed, it is enough to characterise the be-
haviour of . A quick semantic analysis leads us to four fundamental equations:

(dup)= (del)=

(∅)= (cons)=

Definition 120. Let Rca be the prop freely generated over the same signature as Rc
with the additional generator and equations (dup), (del), (∅) and (cons).

We will show that Rca gives a sound and complete calculus for PolyRel. First, let
us explain the four new axioms. The first two are the same as those used for affine
maps and can be seen as inherited from this prop. The third equation is justified by
the possibility of expressing the empty set, by, for example,

J K = {(•, 1)} ; {(0, •)} = ∅. (4.33)

As we have mentioned previously, ∅ is an example of a polyhedral relation that is
not additive. Since for any R and S in RelN, ∅⊕R = ∅⊕ S = ∅.

Composing or taking the monoidal product of ∅ with any relation results in ∅;
∅ is thus analogous to logical false. Indeed we can use (∅) to derive the following
lemma.

Lemma 121. For any two c, d : k → l diagrams of Rca, we have

c lk = d
k l

Proof. Because they represent the empty relation, all diagrams of this form should
be equal in Rca. The proof relies on the ability to completely disconnect all diagrams
using the (∅) axiom. To verify this, we can reason by structural induction. For the
base cases, we check that all generators of the same type, tensored with , are equal.
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• For the counits, we have

(∅)= (bo)= (4.34)

• For the monoids, we have

(•-coun)= (4.34)= (Lem. 67)= (biun)=
(4.35)

and, similarly,

(Lem. 67)= (biun)= (4.34)= (•-coun)=
(4.36)

• The reasoning for the dual generators is the same, flipped horizontally.

For the inductive case, notice that

(dup)= (Prop. 56)= (•-sp)= (4.37)

Then, assume that we have

c lk = d
k l and c′

l l = d′
l l (4.38)

so that their composition satisfies the expected property:

c c′
(4.37)= c c′ (4.39)

(I.H.)= d d′ (4.40)

(4.37)= d d′ (4.41)

The case of the monoidal product is entirely analogous.

The last equation, (cons), enforces the consistency of systems of non-negative
integer equations. In symbolic form it guarantees that, if 2n+m = 1 then n = 0 and
m = 1. From this simple axiom, we can prove that if p1n1 + · · · + pknk = 1 has a
satisfying assignment iff not all the pi, for 1 ≤ i ≤ k are strictly greater than 1. The
following lemmas restate this in graphical form.
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Lemma 122. For all n > 1,
n

=

Proof. By induction on n. The base case is the axiom (cons). Assume that the
statement of the lemma is true for some integer n > 1. Then,

n + 1
=

n

(4.42)

(•-as)=
n

(4.43)

(I.H.)= (4.44)

(◦•-bi)= (4.45)

(◦-un)= (4.46)

Lemma 123. Let n1, . . . , nk be integers such that ni > 1, for 1 ≤ i ≤ k. Then
n1

ni

nk

=

Proof. By induction on k. For k = 1 it is a direct consequence of Lemma 122:

n
(◦-un)=

n (Lemma 122)=
n (◦-biun)= (4.47)

Assume that the statement of the lemma holds for some k. Then,

nk

ni

n1

nk+1

(Lemma 122)=

nk+1

ni

n1

nk

(4.48)

(◦-biun)=
ni

n1

nk

(4.49)

(I.H.)= (4.50)
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We extend J− K : Rc→ AddRel to J− Ka : Rca → PolyRel by letting

J Ka = {(•, 1)}. (4.51)

Notice that J− Ka, is a prop morphism: from the preceding discussion it is clear that
the equations of Rca are sound for polyhedral relations. Moreover, like Rc for additive
relation, Rca is complete for polyhedral relations.

Theorem 124. J− Ka : Rca → PolyRel is an isomorphism of props.

Proof. The functor J− Ka : Rca → PolyRel is full by the representation of equation
(4.32). For faithfulness we will use a normal form argument, building on the normal
form of additive relations. Let d : k → l be a diagram in Rca. By the naturality of
the symmetry we may write d as follows:

d
lk = c

lk

(4.52)

for some diagram c, in the image of the embedding Rc ↪→ Rca. In graphical terms,
we have pulled the generators up and down, past the rest of the diagram which
represents some additive relation c. We may now simplify it:

c

lk
(dup)= c

lk

(4.53)

= c′
lk

(4.54)

where c′ is the diagram enclosed in the dotted box. Finally, from the normal form for
additive relations (displayed in (3.39)), we can find a matrix diagram A such that

d
lk = A

l

k

= A

l

k

(4.55)

and where the columns of A are the Hilbert basis of the additive relation J c′ K. Here,
is the transpose of . By Corollary 117 and the completeness of Rc for additive

relations, the polyhedron J d Ka is uniquely characterised by this decomposition if it
is nonempty.
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If it is empty however, this means that the row of A to which is connected is(
n1 n2 . . . nk

)
with either all ni > 1 or ni = 0, for 1 ≤ i ≤ k. In the first case,

there exists a matrix B such that

d
lk = B

l

k

n1

nk

ni (4.56)

and therefore, by Lemma 123,

d
lk = B

l

k

(4.57)

In the second case, A is disconnected from . We can deduce that d is of the
following form, for some matrix B:

d
lk = B

l

k

(4.58)

By Lemma 121 we know that all of these are equal in Rca, which concludes the
proof.

Remark 125. The same technique can be applied to interacting Hopf algebras to
axiomatise affine relations (affine subspaces of Kk × Kl for a field K). A field has
additive and multiplicative inverses so the axiom (cons) is not sound, but the other
three (dup, del, ∅) are sufficient to obtain a complete calculus. The proof is in fact
simpler because the equation a1x1 + · · · + akxk = 1 always has a solution in a field,
for a1, . . . , ak not all zero. Thus, the only case of interest in the proof above for the
linear case is that of (4.58).

The affine resource calculus is remarkably expressive: finding whether there exists
a single element of the relation corresponding to a diagram (a satisfying assignment)
is NP-hard [Kar72], as a function of the number of open ports. Rewriting a diagram
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in normal form is of course more complex but we do not yet know of an upper bound
for the number of steps.

The presence of and its associated axiom provides a purely graphical coun-
terpart to an integer form of the Farkas lemma in linear programming. It is stated
below in its logical form which can be shown equivalent to other more geometric
formulations.

Theorem 126 (Farkas lemma). Whenever a linear system Ax ≤ b is inconsistent,
in the sense that no x ∈ Rd satisfies it, we can derive the absurd statement 1 ≤ 0
from it by taking sums of rows of A.

Proof. There exist many proofs of this statement and of equivalent theorems. This
form of the Farkas lemma is particularly well-suited to a proof using Fourier-Motzkin
elimination, the analog of Gaussian elimination for systems of linear inequalities.
See [Nie13] for an elementary introduction.

Theorem 127. If a diagram in Rca represents the empty relation, it is equal to one
of the form

d
k l

for a diagram d.

Proof. This is an immediate consequence of the completeness Theorem 124.

This means that, for an empty polyhedron, using solely the axioms of Rca we can
derive the inconsistency , analogous to 1 ≤ 0 in the statement of the Farkas lemma.
Let us see how this works on a simple example that is not obviously inconsistent at
first sight.

Example 128.

(Lemma 67)= (4.59)

(•-un;◦-co)= (4.60)
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(◦-as)= (4.61)

(◦-un; can)= (4.62)

(◦-bicoun)= (4.63)

(◦-biun;◦-un)= (4.64)

Remark 129. We can think of polyhedral relations as nondeterministic sums of ad-
ditive relations. From this point of view, the affine constant endows the resource
calculus with a form of nondeterministic choice. In categorical quantum mechanics,
mixed states (convex sums of pure quantum states) can be encoded using a technique
called the CPM construction [Sel07]. This construction has been axiomatised in
terms of environment structures [Coe08, CP10]. They can be understood as adding
a constant that represents the process of discarding parts of a system. While no
compatibility with a copying process is required (since there is no canonical Frobe-
nius structure for quantum systems), the effect is similar: the additional constant
introduces nondeterminism. The precise nature of this relationship remains to be
investigated.

4.4 Bounded connectors

In [BLM06], the authors describe a coordination language [GC92] called the Calculus
of Stateless Connectors. Their aim is to separate local computation in distributed
systems from the interactions between different sub-systems. Stateless connectors in
this context are simple components that provide a glue to build distributed communi-
cating systems according to a specification, in the same spirit as practical languages
like Reo [BSAR06] or CommUnity [FM97]. They are generated by a small set of
primitives for synchronisation, mutual exclusion, nondeterministic choice and hiding.
The calculus of stateless connectors admits an intuitive operational interpretation and
a fully abstract denotational semantics as the smc of relations over the two-element
set, i.e., subsets of 2k×2l, that contain (0,0), which the authors call tick-tables. Like
the resource calculus, stateless connectors admit a graphical syntax and the authors
provide a sound and complete equational theory to reason about their behaviour.
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Stateless connectors can be faithfully encoded in PolyRel: there is a faithful functor
between the two props. In fact, this is almost immediate because any finite subset
of Nk × Nl is a polyhedral relation so, in particular, subsets of 2k × 2l ⊆ Nk × Nl are
polyhedral. Nonetheless it is useful to write down the translation explicitly in order
to illustrate how the same connectors can be represented in the resource calculus
and, ultimately, how the resource calculus could be used as the foundation for a
similar coordination language. It is also important to note that the equational theory
of [BLM06] has several complicated axioms including an axiom scheme with no clear
interpretation. While our axiomatisation also contains an axiom scheme, it is arguably
much more natural.

Intuitively, the translation relies on the possibility of bounding the resources that
wires transmit, with the affine part of PolyRel. In the calculus of stateless connectors
of [BLM06], these resources are not modelled as natural numbers, but rather as a
binary synchronisation signal, that can be either on or off (0 or 1). Bounding the
resources available is achieved with the following relation:

t |

= {(0, 0), (1, 1)} (4.65)

To avoid carrying this diagram around explicitly when it is not needed, we can intro-
duce ticked wires as syntactic sugar for 1-bounded wires:

:= (4.66)

This notation is justified by the idempotence of the 1-bounded wires:

(dup)= (4.67)

(Lemma 67)= (4.68)

(•-as)= (4.69)

(•-un)= (4.70)

(cnot)= (4.71)
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The use of a horizontally symmetric notation is further justified by the fact that
is self-transpose:

= (Spider)= (4.72)

The stateless connectors are then precisely the 1-bounded counterpart of those of Rc,

(4.73)

with semantics given below:
r z

=
{(

0,
(

0
0

))
,

(
1,
(

1
1

))}
J K = {(0, •), (1, •)} (4.74)

r z
=
{((

0
0

)
, 0
)
,

((
1
1

)
, 1
)}

J K = {(•, 0), (•, 1)} (4.75)
r z

=
{((

0
0

)
, 0
)
,

((
1
0

)
, 1
)
,

((
0
1

)
, 1
)}

J K = {(•, 0)} (4.76)

The -structure is the usual Frobenius structure restricted to 0 and 1. The -structure
is more interesting. It encodes mutual exclusion:

r z
=

u

w
v

}

�
~ =

{((
n
m

)
, n+m

)
| n+m ≤ 1

}
(4.77)

The port on the right is activated precisely when at most one of the ports on the
left is activated. In other words, the two ports on the left cannot be activated at the
same time; they exclude each other. Note that the ticked and -structures do not
interact through the bimonoid law any more since, for example, (•◦-biun) does not
hold:

6= (4.78)

Since the calculus of stateless connectors is the sub-prop of Rel2 generated by the
morphisms above, we immediately get a faithful encoding. This is a consequence of
the completeness of Rca and the obvious embedding Rel2 ↪→ RelN induced by the set
inclusion 2 ↪→ N. Note that the embedding Rel2 ↪→ RelN is not a functor since it does
not preserve identities. It is however, a functor up to an idempotent in a sense that
Definition 130 and the discussion following it will make precise.

Definition 130. The Karoubi envelope (or idempotent completion) of a category C is
the category Ĉ with objects pairs (A, e : A→ A) of an object and an idempotent of C.
Its morphisms (A, e)→ (B, f) are morphisms ϕ : A→ B of C such that ϕ = e ; ϕ ; f .
Composition is inherited from C and the identity on (A, e) is e.
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The envelope Ĉ contains C as the full subcategory spanned by objects of the form
(A, idA). When C is a smc, it is not difficult to see that its Karoubi envelope is also
a smc.

We can see that stateless connectors are morphisms of P̂olyRel between monoidal
products of (1, ). An important property of stateless connectors is that they can
always stay idle, not synchronising with their environment. This is witnessed by the
fact that the associated relation always contains (0,0). Therefore, stateless connectors
are precisely those morphisms verifying

= (4.79)

Note that there is some redundancy in the translation because, for example, simply
adding one tick to the left port of (that is, pre-composing with the 1-bounded
wire) is enough to obtain the desired relation. However it is instructive to see the
stateless connectors as those of Rc up to an idempotent. In fact, following this train of
thought, there is no reason to limit ourselves to 1-bounded wires. We can generalise
them to model, not only connectors that are n-bounded for a fixed n, but also the
interaction between connectors with access to resources with different bounds.

To each natural number n we can associate an idempotent as we did for 1. Let

n :=
n− 1

0 := (4.80)

and
n

:=
n

(4.81)

Similarly, to any list of natural numbers n1, . . . , nk we associate the idempotent

(n1, . . . , nk)
kk :=

n1

nk

(4.82)

We restrict our attention to the sub-smc of P̂olyRel with objects (k, (n1, . . . , nk)),
where (n1, . . . , nk) denotes the associated idempotent, and morphisms (k, (n1, . . . , nk))→
(l, (m1, . . . , nl)) those verifying equation (4.79). We can think of them as rela-
tions with access to bounded resources specified by the two bounds (n1, . . . , nk) and
(m1, . . . ,ml).

Finally, if we drop the requirement of equation (4.79), we can express all relations
between finite sets. Let fRel× be the full sub-smc of Rel× spanned by finite sets (note
that this is not a prop).
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Theorem 131. The full sub-smc Bound of P̂olyRel spanned by objects (k, (n1, . . . , nk))
is monoidally equivalent to fRel×.

Proof. Clearly, morphisms (k, (n1, . . . , nk)) → (l, (m1, . . . , nl)) in Bound are in bijec-
tive correspondence with relations n1 × · · · × nk → m1 × · · · ×ml. Let us describe
the equivalence explicitly: let K : Bound → fRel be given by K(k, (n1, . . . , nk)) =
n1× · · ·×nk and K(P ) = P . This is functorial because morphisms of P̂olyRel inherit
composition from PolyRel which itself inherits it from Rel. Finally, this is an equiva-
lence because every finite set of cardinality n is isomorphic to the finite ordinal n, by
fixing a total order.

As a result, we obtain a sound and complete graphical calculus for fRel×, from the
graphical calculus Rca for polyhedral relations. The reader may find it strange that
this calculus exploits a total order on each set k to encode arbitrary relations. We
can always do this in the same way that we can choose a basis on a finite-dimensional
vector space and represent arbitrary linear transformations as matrices.
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Chapter 5

Towards stateful concurrency

The resource calculus (with its affine extension) provides a convincing coordination
language for stateless concurrency. However, without state, the synchronisation pat-
terns that it can express is limited. This is why we would like to extend it to capture
the behaviour of stateful systems. To this effect, we will expand our syntax with
an additional generator x , representing a state-holding synchronous register. Its
operational behaviour is that of a simple one-step buffer: at any given moment if it
holds value n it releases to the environment on the right, and stores whatever value
m it synchronised with on the left.

This new piece of syntax will force us to modify our semantics slightly. We will
need to introduce relations with extra state passing variable that represent the reg-
ister’s change of value. These can be thought of as labelled transition systems with
pairs of labels on the left and on the right for each transition. We show that this
corresponds to an abstract functorial construction St(−) that can be applied to any
prop. It turns out that adding a single 1→ 1 generator to any prop T with sufficient
structure produces a prop isomorphic to St(T). In particular, the resource calcu-
lus extended with the register x is isomorphic to St(AddRel), a prop in which
morphisms are additive labelled transition systems.

As a case study, we show that the transition systems of (open) Petri nets can
all be expressed in the stateful resource calculus. This encoding relies on the crucial
realisation that the behaviour of a place in a Petri net is precisely that of the following
diagram:

x
(5.1)

Indeed, assume some value s ∈ N is currently in the register. Regardless of what
value n ∈ N arrives on the left, in order to observe m ∈ N on the right one just needs
to find n′ such that m+n′ = s; this is only possible if m ≤ s. This observation finally

120



connects the work of this thesis with one of its original motivations, as promised in
Section 3.1.

Note that the stateful resource calculus is strictly more expressive than (open)
Petri nets. The latter are fundamentally asynchronous in the sense that they can
always stay idle and arbitrarily delay the firing of transitions. Only the causal ordering
of transition matters. The stateful resource calculus, however, is synchronous: the
register forces the synchronisation of its left and right ports with a delay of precisely
one timestep. Through the feedback loop of the diagram above (5.1), we can encode
the asynchronous place into our synchronous calculus, but this is not the only possible
use of our results. We envisage the resource calculus as an assembly language for
concurrency into which different formalisms can be compiled and compared. The
possibility of embedding Petri nets is here to validate our approach but is not the
fullest application of the calculus, even if it is the one of the only concrete case studies
of this thesis.

Remark 132. The results of Sections 5.1 and 5.2 have been published in [BHP+19],
co-authored with Filippo Bonchi, Josh Holland, Pawe l Sobociński and Fabio Zanasi.
As for Chapter 3, the author of this thesis is greatly indebted to his collaborators for
the presentation of the results of this chapter. In particular, a lot of the results of
Sections 5.1 and 5.2 that also appear in [BHP+19] were formalised and written jointly
with Filippo Bonchi.

5.1 An axiomatic approach to stateful systems

We would like to extend the stateless calculi Rc and Rca to include systems with
internal state. First, we adopt a more abstract perspective to demonstrate that:

(a) from any prop T one may obtain a prop St(T) in which morphisms are stateful
systems;

(b) in the presence of a compact closed structure on T, moving to St(T) amounts
to extending T with a single generator x with no equations.

From this, it follows that the stateful resource calculus and its affine extension are
sound and fully complete axiomatisations of the props St(AddRel) and St(PolyRel),
respectively.
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5.1.1 Adding internal state

From a given prop representing stateless systems, the construction St(−) in Defini-
tion 133 below results in a prop in which the morphisms are stateful systems. This
way of adding state is a natural and well-known technique that appears in several
places in the literature, for example, in the setting of Cartesian bicategories [KSW97a]
and the Geometry of Interaction [HMH14].

Definition 133. Let T be a prop. Define St(T) as the prop where:

• morphisms k → l are pairs (s, c) where s ∈ N and c : s+k → s+ l is a morphism
of T , quotiented by the smallest equivalence relation including every instance
of

k

d
σ

s s

l

∼
k

d
σ

ss

l

(5.2)

for permutations σ : s→ s;

• the composition of (s, c) : k → l and (t, d) : l → p is (s + t, e) where e is the
arrow of T given by

s

d

s

t

k l

c
p

t (5.3)

• the monoidal product of (s1, c1) : k1 → l1 and (s2, c2) : k2 → l2 is (s1 + s2, e)
where e is given by

k2

c1

c2k1 l1

l2

s2

s1 s1

s2

(5.4)

• the identity on j is (0, idj) and the symmetry of k, l is (0, σk,l).

Composition and the monoidal product are strictly associative because those of T
are. Moreover, they are both immediately seen to be congruences for the equivalence
relation of (5.17).

Example 134. Thinking of ordinary functions between sets as stateless determinis-
tic transducers, the morphisms of St(Set) are functions whose output does not just
depend on their input, but also on a set of internal states that is updated at every ap-
plication. In other words, a stateful function A→ B is a transducer f : S×A→ S×B.

In the setting of sets and relations, stateful morphisms are (2-)labelled transition
systems (lts) with labels in A and B. For additive relations, St(AddRel) is a prop of
additive lts.
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The equivalence relation of Definition 133 ensures that internal state remains
anonymous. The set of stateful wires is hidden and ought to serve only as a reference
for internal state. We do not want to keep track of the states’ labels but only of the
states themselves. This is why we equate transducers that only differ by a bijective
relabelling of their set of states. We can think of this as a syntactic form of equivalence
akin to α-equivalence.

Remark 135. The reader familiar with (co)ends might have noticed that the St(−)
construction can be expressed concisely as the following coend:

St(T) ∼=
∫ s:P

T(ι(s) + k, ι(s) + l) (5.5)

where P is the prop of permutations and ι : P→ T the canonical inclusion of permu-
tations in T (c.f. Remark 27). Unrolling the definition, we see that∫ s:P

T(ι(s) + k, ι(s) + l) =
∑

σ : s→s
T(s+ k, s+ l)/ ∼ (5.6)

for which the equivalence relation is precisely the one given by (5.17).

There exists an obvious embedding T ↪→ St(T) since f : k → l can always be seen as
a stateful morphism f : 0 + k → 0 + l. In more concrete terms, a stateless system can
always be seen as stateful with trivial state.

Finally, the state construction is itself functorial.

Proposition 136. St(−) extends to an endofunctor on Prop.

Proof. Let F : T → T′ be a prop morphism. Define St(F ) : St(T) → St(T′) by
St(F )(k) = F (k) on objects and St(F )(c) = F (d) for a morphism d : s + k → s + l

of T in the equivalence class c. This is well-defined because, if d ∼ d′, there ex-
ists a permutation σ : s → s such that d = (σ ⊕ 1k) ; d′ ; (σ−1 ⊕ 1l), then F (d) =
(σ ⊕ 1k) ; F (d′) ; (σ−1 ⊕ 1l) (since F is a prop morphism, it is strict monoidal).

St(−) is immediately seen to be functorial from its definition.

5.1.2 Presenting St(−)

Let X be the prop freely generated by a signature with a single generator, x ,
and no equations. Given a prop T, one can form the coproduct T + X of T and
X (cf. Section 2.2.2). Intuitively, the prop T + X is simple to describe: it arises by
freely pasting together sequentially and in parallel the morphisms of T with the single
generator x of X.
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In Theorem 138 below, we give a simple characterisation of St(T): it is isomorphic
to T + X, assuming that T has compact closed structure1. This result relies on the
simple technical lemma below, which is a useful characterisation of the morphisms of
T + X.

Lemma 137 (Trace canonical form). Suppose that T is a compact closed prop. For
every d : k → l in T + X there exists a morphism c : s+ k → s+ l of T such that

d
lk = c lk

x

s

(5.7)

Proof. By structural induction on morphisms of T + X. For the base case, if a mor-
phism d of T + X is in either T or X, the statement holds since

x = x =
x

(5.8)

and every morphism of T is trivially in trace canonical form with the trace taken over
the 0 object.

There are two inductive cases to consider:

• d is given by the sequential composition of two morphisms a : k → l and b : l→ p

in trace canonical form:

a
l

k
x

s

x
b

t

p = a
l

k

s

x
b

t

p

x

(5.9)

= ck

s

x

t

p

x

(5.10)

= c pk
x

s + t

(5.11)

• d is given as the monoidal product of two morphisms c1 : k1 → l1 and c2 : k2 → l2,
1Here, we can assume that T is compact closed in the general sense (Remark 14) and not nec-

essarily self-dual compact closed. In fact the theorem holds in the more general setting of traced
symmetric monoidal categories (Definition 157) as the proof only makes use of the properties of the
trace.
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both in trace canonical form:

c1 l1k1
x

s1

x
c2 l2k2

s2 =
c1

l1k1

x

s1

xc2 l2k2

s2

(5.12)

= l1k1

x

s1

x
c

l2k2

s2

(5.13)

= c l1 + l2k1 + k2
x

s + t

(5.14)

To exhibit the isomorphism St(T) ∼= T + X, we define two monoidal functors,
R : X → St(T) and Z : T → St(T). For X it suffices to say where its single generator
is mapped: set R( x ) = (1, ). The second functor Z : T → St(T) is defined as
Z(t) = (0, t) for all arrows t of T. Let

F := 〈Z,R〉 : T + X→ St(T)

be the prop morphism obtained from the universal property of the coproduct. In-
tuitively, we can think of F as an operation on diagrams that cuts the x out
and pulls the wires to which it was connected into state-passing wires. Indeed, since

x is mapped to , we have, for a morphism of T + X in trace canonical form:

F

 d lk
x

s  = d
lk

ss

= d
lk

s s

(5.15)

If we interpret the operations of T + X as processes, the canonical interpretation of
x is that of a register that holds its state until it is set to a new value, at which

point it releases the content of its memory to the rest of the system. This is precisely
the meaning of .

Theorem 138. If T is a compact closed prop then F := 〈Z,R〉 is an isomorphism.
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Proof. We construct the inverse of F explicitly. Let G : St(T)→ T + X be defined by

G

(
d

lk

s s
)

= d lk
x

s

(5.16)

Thus, while F cuts out the x , G takes a stateful d and feeds back the state guarded
by x . This mapping is well defined because, for σ : s→ s a permutation, we have

G


k

d
σ

s s

l

 =
k

d
σ

l

x

s

(5.17)

=
k

d
l

x

s

σ (5.18)

=
k

d
l

x

s

σ (5.19)

= G


k

d
σ

ss

l

 (5.20)

The penultimate equality is only valid because σ is a permutation and, by naturality
of the symmetry in a smc, it commutes with the s parallel copies of x .

Monoidal functoriality follows from the compact structure; the argument is similar
to the proof of Lemma 137.

We now prove that F and G are inverse. Given d in St(T), the fact that FG(d) = d

is immediate by (5.15). Conversely, given c in T + X, we can use the conclusion of
Lemma 137 to obtain d in T such that

c lk = d lk
x

s

(5.21)

Thus, we have

GF (c) = G

(
d

lk

s s
)

= d lk
x

s

= c lk (5.22)

We can now extend the resource calculus with a register to define the stateful
resource calculus, Rcs := Rc + X. Its morphisms admit an operational semantics in
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terms of additive lts via J− Ks : Rcs → St(AddRel) given by the composite

Rcs
〈Z,R〉−−−→ St(Rc) St(J− K)−−−−→ St(AddRel) (5.23)

The stateful resource calculus constitutes a basic assembly language for distributed
systems. To showcase its expressiveness we will demonstrate how to embed Petri nets
into it in Section 5.2.

Remark 139. What we mean by “operational semantics”. There is a long
tradition, starting with the work of Plotkin [Plo04], of defining the behaviour of a
program as a function of the behaviour of its parts. Structural operational seman-
tics defines behaviour inductively, as the small-step evolution of each piece of syntax,
given by a set of inference rules on terms. This specifies how a machine should exe-
cute a program, like β-reduction for the λ-calculus. For Rcs, we do not specify how to
execute diagrams but instead we translate them into labelled transition systems, in
St(AddRel). We use the expression “operational semantics” in contrast to less inten-
sional notions of process equivalence, like trace equivalence or bisimilarity. We could
translate between our approach and a more traditional view of structural operational
semantics by first introducing a new piece of syntax. For every m ∈ N, let

x
m

(5.24)

be the register holding value m, with operational semantics given by the following
structural rule:

x
m n−→

m
x
n

(5.25)

The operational meaning of the other terms of our syntax are given recursively by

n−→•
n−→(
n
n

) •−→
n

(
n
n

)
−−−→

n(
n
m

)
−−−−→

n+m
•−→0

•−→•
n−→
n

(
n
m

)
−−−→(

m
n

)
(5.26)

with inference rules for sequential and parallel compositions displayed below:

s
a−→b s′ t

b−→c t′

s ; t a−→c s′ ; t′

s
a1−→b1

s′ t
a2−→b2

t′

s⊕ t

(
a1
a2

)
−−−→(b1

b2

) s′ ⊕ t′
(5.27)
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where m,n range over the natural numbers N and a,b, c over natural number vec-
tors. Note that this operational semantics is not meant to be executable directly, as
relational composition contains unbounded nondeterminism.

Operational semantics like ours are closely related to the tile model [GM00]. In
fact, we could also arrange St(AddRel) as a symmetric monoidal double category,
which would correspond more closely to the tile calculus developed in [SMMB13].
We leave the precise correspondence between the two for future work.

5.2 Petri nets

Definition 140. A Petri net P = (P, T, ◦−,−◦) consists of a finite set of places P ,
a finite set of transitions T , and functions ◦−,−◦ : T → NP . Given a, a′ ∈ NP , we
write a → a′ if there exists t ∈ NT such that ◦t ≤ a and a′ = a − ◦t + t◦. The
operational semantics (also known as the firing semantics) of P is the relation

Fire (P) = {(a, a′) | a→ a′} ⊆ NP × NP . (5.28)

Example 141. Consider the Petri net displayed below with the usual graphical
notation, as bipartite graphs with circles representing places and squares representing
transitions:

The multisets in the firing semantics are represented by tokens in the places. A given
state is also called a marking. Transitions move tokens from one place to another. For
example, from the state on the left below, the two rightmost transitions are enabled
and can fire to give:

−→

(5.29)

The following is an important observation.
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Proposition 142. For a Petri net P = (P, T, ◦−,−◦), Fire (P) is an additive relation
|P | → |P |.

Proof. This can be seen as an immediate consequence of the encoding of Petri nets
into the resource calculus, Proposition 147 below. But this simple fact can be proven
without referring to the resource calculus. We sketch a direct proof here. If (a1, a′1) ∈
Fire (P) and (a2, a′2) ∈ Fire (P), then there exists t1, t2 ∈ NT such that ◦t1 ≤ a1,
a′1 = a1 − ◦t1 + t1

◦ and ◦t2 ≤ a2, a′2 = a2 − ◦t2 + t2
◦. So ◦t1 + ◦t2 ≤ a1 + a2 and

a′1 + a′2 = a1 + a2 − ◦t1 − ◦t2 + t1
◦ + t2

◦. Therefore, (a1 + a2, a′1 + a′2) ∈ Fire (P).
Finally to see that Fire (P) is finitely generated, let ◦− and−◦ be given by the matrices

A1 and A2 respectively. Then
(
A1
A2

)
is a representing matrix for Fire (P).

Petri nets are combinatorial objects, usually studied monolithically rather than
compositionally. We introduce a syntax Petri that (i) extends the resource calculus in
a straightforward way and (ii) whose closed diagrams (arrows in Petri(0, 0)) capture
precisely the firing semantics of Petri nets. Moreover, arbitrary diagrams are open
nets in the style of [SMMB13] as we will show in Section 5.2.3.

The syntax is that of the resource calculus extended with one extra generator
: 1→ 1 to represent a place. Formally, its semantics reproduces the operational

behaviour of Definition 140 and is given by the following rule:

J Kp :=
{((

p
m

)
,

(
m+ p− n

n

))
| n ≤ p

}
(5.30)

Observe that Petri is the same as the coproduct Rc + Pl in Prop, where Pl is the prop
whose arrows are string diagrams on the signature with the single generator
and no equations. Then J− Kp extends to a prop morphism Petri→ St(AddRel) which
maps all generators of Petri inherited from Rc to their semantics in St(AddRel) through
the isomorphism Rc ∼= AddRel and the embedding AddRel ↪→ St(AddRel). Since we
impose no equations on , this mapping is immediately seen to be functorial and
symmetric monoidal by construction.

5.2.1 Encoding nets into Petri

Before rigorously defining the encoding, it is more instructive to illustrate the role of
Petri with an example.
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Example 143. The diagram of Petri(0, 0) corresponding to the net of Example 141
is:

More generally, a place with multiple inputs and outputs is depicted as

using and , while transitions are represented with the help of and
.

It is useful to remark that, contrary to the usual depiction of Petri nets as directed
bipartite graphs, in our formalism it is the places—not the edges of transitions—which
are directed. In Petri, the transitions are simply additive relations and, as such, do
not admit a consistent directionality. The addition of the places is what directs the
flow of tokens, since they have a well-defined notion of inputs and outputs. This
is why we choose to depict them with an arrow ( ) in order to highlight this
distinction.

Any ordinary Petri net P can be encoded as a diagram dP in Petri(0, 0). By
choosing an ordering on places and transitions, the functions ◦−,−◦ : T → NP can
be regarded as matrices with coefficients in N, of type |T | → |P |. Such matrices can
be seen as special cases of additive relations (cf. Theorem 63, Section 3.5): let U and
V be the matrix corresponding to ◦−, −◦ respectively. We also identify them with
their diagrams in Rc. Let dP be

V

U
|P |

|T |
(5.31)

The following lemma ensures that the assignment P 7→ dP is well defined, namely
that it is independent from the chosen ordering on places and transitions.

Lemma 144. Let σ : |P | → |P | and τ : |T | → |T | be two permutations. Then

V

U
|P |

|T |
=

V

U σ

σ

|P |τ

τ|T |

(5.32)
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Proof.

V

U σ

σ

|P |τ

τ|T |

=
V

U σ

σ

|P |

τ−1 τ|T |

(5.33)

=
V

U σ

σ

|P |

|T |

(5.34)

=
V

U

σ

|P |

σ−1|T |

(5.35)

=
V

U

σ

|P |

σ−1|T |

(5.36)

=
V

U
|P |

|T |
(5.37)

Lemma 145. Let c ∈ Rc(p, p). Then
t

c

p
|

p

= {(a, a′) | ∃(x,y) ∈

J c K such that x ≤ a and a′ = a − x + y}.

Proof. We can easily extend by induction the semantics of a single place, given in

(5.30), to s places in parallel:
((

a
y

)
,

(
a′
x

))
∈

q s s y
p

iff x ≤ a and a′ =

a − x + y. The statement of the lemma follows immediately.

We show that P and dP have the same operational behaviour.

Proposition 146. Given a Petri net P, we have Fire (P) ∼ J dP Kp (with ∼ the
equivalence relation on morphisms of St(AddRel)).

Proof. Let P = (P, T, ◦−,−◦) be a Petri net. Since the operational equivalence is
stated modulo ∼, we can fix a total order on P and T . Let a, a′ ∈ N|P |. Denote by U
and V the matrices corresponding to ◦− and −◦ in the definition of dP . Thus we have
(a, a′) ∈ Fire (P) iff there exists f ∈ N|T | such that U f ≤ a and a′ = a − U f + V (f).
Since U † ; V = {(x,y) | x = U f and y = V f}, we have that (a, a′) ∈ Fire (P) iff
there exists (x,y) ∈ U † ; V such that x ≤ a and a′ = a − x + y. By Lemma 145, we
conclude that (a, a′) ∈ Fire (P) iff (a, a′) ∈ J dP Kp.
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Similarly, for every diagram d ∈ Petri(0, 0), one can construct a Petri net Pd with
the following recipe: by Lemma 137, d can be written in trace canonical form, namely
there exists a diagram c ∈ Rc(p, p) such that (5.7) holds. The diagram c denotes an
additive relation J c K ⊆ Np × Np that, by Proposition 46, has an Hilbert basis. This
basis can be represented as a matrix A : t → p + p for some t ∈ N representing
the dimension of the basis. The matrix A can be decomposed into two matrices

U, V : t→ p such that A =
(
U
V

)
. We define Pd := (p, t, U, V ), that is, p and t are the

sets of places and transitions, while U and V play the role of ◦− and −◦, respectively.
Again, we can prove that the operational behaviour is preserved.

Proposition 147. For all d ∈ Petri(0, 0), J d Kp ∼ Fire (Pd)

Proof. First, observe that by construction (x,y) ∈ J c K iff there exists f ∈ Nt such
that U f = x and V f = y. Therefore, by Lemma 145, (a, a′) ∈ J d Kp iff there
exists f ∈ Nt such that U f ≤ a and a′ = a − U f + V f . That is (a, a′) ∈ J d Kp iff
(a, a′) ∈ Fire (Pd).

By virtue of Propositions 146 and 147 together, the lts coming from Petri nets
and diagrams in Petri(0, 0) are in one-to-one correspondence (modulo ∼).

5.2.2 Classifying notions of state

Because Rcs is isomorphic to St(Rc) which is itself isomorphic to St(AddRel), the
semantics J− Kp : Petri → St(AddRel) factors through a prop morphism P : Petri →
Rcs. Once we know that the behaviour of is an arrow of St(AddRel), the
encoding of in Rcs is completely determined. First, we can write the place’s
semantics as a St(Rc) diagram2:

J Kp :=
{((

p
m

)
,

(
m+ p− n

n

))
| n ≤ p

}
=

t |

(5.38)

Using the isomorphism 〈Z,R〉−1 = G : St(Rc)→ Rcs from the proof of Theorem 138,

G

  = G

  (5.39)

= G


 (5.40)

2Technically, a morphism of St(T) is defined as a pair (s, d) of a number of state-passing wires,
and a morphism of T. We omit the number of stateful wires where no confusion can arise.
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= G

  (5.41)

=
x

(5.42)

This shows that P : Petri→ Rcs is given by

P ( ) :=
x

(5.43)

and the identity on Rc.
We have shown that the stateful resource calculus is at least as expressive as Petri

(and thus Petri nets). In fact Petri is strictly less expressive than Rcs, in the sense
that not all lts definable in Rcs correspond to diagrams of Petri. Intuitively, this is
because the register of the resource calculus is synchronous whereas the place of Petri
nets is asynchronous: it can always perform a transition that does not change its
internal state. This property holds for all diagrams of the Petri calculus:

Proposition 148. Let d be in Petri. Then
((

a
0

)
,

(
a
0

))
∈ J d Kp for all a.

Proof. By induction. The only case of interest is , and
((

a
0

)
,

(
a
0

))
∈ J Kp

by (5.30).

Given that
((

a
0

)
,

(
a
0

))
6∈ J x Ks we immediately obtain:

Corollary 149. For all diagrams d in Petri, J d Kp 6= J x Ks.

The expressiveness result strengthens the claim that x is a more canonical
than to introduce state to Rc.

Moreover, we can use the example of to show in a more precise sense how
the resource calculus plays the role of a yardstick, guiding the space of design choices
for process calculi. Indeed, the same kind of analysis can be performed with other
interpretations of Petri nets.

Banking semantics. One example from the literature is the banking semantics [BMM11,
SMMB13], which defines behaviour differently. In our formalism, the banking
semantics interprets the place as

7→
{((

p
m

)
,

(
p′

n

))
| p+m = p′ + n

}
=

r z
(5.44)
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And a similar computation yields a diagram in Rcs with the same operational
behaviour:

7→ x (5.45)

C/E nets. The Petri nets that have appeared so far are sometimes called P/T nets,
in contrast with C/E nets (also known as elementary net systems). For C/E
nets, the places can hold at most one token each. For this, the stateful resource
calculus is not sufficient—we need the affine constant as well. Let Rcsa :=
Rca +X; using the ticked wires of Chapter 4, Section 4.4 to represent resources
bounded by one, the place of a C/E net can be interpreted as

7→
{((

p
m

)
,

(
p− n+m

n

))
| p ≤ 1, p− n+m ≤ 1,

}
(5.46)

7→

t |

(5.47)

As a Rcsa diagram, this is represented by

x
(5.48)

Misc. We could also explore new stateful extensions. One example that we did not
find in the literature interprets the place as an accumulator :

7→
{((

p
m

)
,

(
p+m
p+m

))}
=

t |

(5.49)

This corresponds to the Rcs diagram

x
(5.50)

For each notion of state, Figure 5.1 summarises the associated diagrams in St(Rc)
(on the left) and Rcs or Rcsa (on the right). For each of these variants, the (affine)
stateful resource calculus provides a complete calculus within which we can express
faithfully the lts that capture their behaviour. The proofs of these facts are reformu-
lations of those above, adapted to each specific interpretation.
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St(Rc) Rcs

x

x

x

x

Figure 5.1: Comparison of different stateful extensions.

5.2.3 Open Petri nets

The prop Petri generalises the usual notion of Petri net to open Petri nets. Arbitrary
morphisms k → l correspond to Petri nets with a left and right boundary along which
they can be composed. This idea is not new. Open Petri nets with various forms of
composition, tailored to different purposes, abound in the literature. In what follows,
we relate the resource calculus to the connector algebra of [BMM11, SMMB13]. In
that work, Petri nets have open transitions along which they can synchronise with
their environment. This form of composition is very similar to composition in Petri,
as we will see.

A lot of the results of this section imply those of the previous ones on Petri nets.
We chose to clarify the correspondence with regular Petri nets before that of open
nets—at the risk of repeating some of the same arguments—because the notion of
net with boundaries is less standard.

As we hinted in the introduction, this approach is by no means the only formalism
that treats Petri nets as open systems. There are many more proposals to deal
with Petri nets compositionally [Maz87, NPS95, BCEH05, Rei09, BP17, BM18]. The
precise relationship between all of these and the resource calculus will be the object
of future work.

The following is Definition 4.1 in [SMMB13].

Definition 150. A Petri net with boundaries N : k → l is a Petri net (P, T, ◦−,−◦),
equipped with functions •− : T → Nk and −• : T → Nl, such that 〈•−,−•〉 : T →
Nk × Nl is injective (as a map of Set).
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The maps •− and −•—understood as Kleisli arrows for the multiset monads or,
equivalently, as matrices—associate a weight to each boundary transition. The added
condition that they be jointly injective means that we do not allow indistinguishable
transitions.

Example 151. The net 2→ 3

a

3

b

c

d

e
2

f

(5.51)

has boundary maps given by (the non-zero values)

•a =
(

3
0

)
, c• =

0
1
0

 , d• =

1
0
0

 , e• =

0
2
0

 , f • =

0
0
1


Note that the assignment of transitions to the boundaries is undirected.

In order to compose nets with boundaries, [SMMB13] implicitly uses the existence
of weak pullbacks in MatN (Proposition 91). In fact, composition is defined as in
InjSpanN from Remark 100: first take the weak pullback of the two boundary maps,
then factor through the surjective-injective factorisation system in Set. Given two
nets with boundariesM : k → l and N : l→ m, the authors defineM ; N as the net
with

• places PM + PN ;

• transitions the minimal elements of the set of transactions of •(−)M and (−)•N
with indistinguishable transactions identified (cf. Remark 100);

• pre and post-condition functions are given by ◦(a,b)M ;N = ◦(a)M+ ◦(b)N and
(a,b)M ;N

◦ = (a)M◦ + ◦(b)N ;

• boundary functions are given by •(a,b)M ;N = •(a)M ∈ Nk and (a,b)M ;N
• =

(b)N • ∈ Nm.

Petri nets with boundaries can also be composed in parallel: for N1 : k1 → l1 and
N2 : k2 → l2, N1⊕N2 has P1 +P2 as places, T1 + T2 as transitions, ◦− defined as the
direct sum of ◦(−)1 and ◦(−)2 and similarly for −◦, •− and −•.
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Remark 152. To obtain a prop (i.e., a strict monoidal category), nets with bound-
aries should be defined as isomorphism classes of nets. In [SMMB13, Section 4.1]
the authors introduce morphisms of nets N → M as pairs of maps fP : PN → PM

and fT : TN → TM that commute with the pre and post-condition functions and with
the boundary maps. A morphism is an isomorphism when its two components are
bijections.

With these two operations, (isomorphism classes of) nets with boundaries form a
prop [SMMB13, Proposition 5.1] that we denote by PTNet, as in the original paper.

Petri nets with boundaries have an operational semantics with witnesses for the
boundary transitions.

Definition 153. Let N : k → l be a net with boundaries. Fire (N ) ⊆ N|P |+k ×N|P |+l

is the relation given by((
a
b

)
,

(
a′
c

))
∈ Fire (P) iff ∃t ∈ NT such that

{
◦t ≤ b, a′ = a − ◦t + t◦
•t = b, t• = c

To each net with boundaries we can associate a diagram in Petri. We can essen-
tially proceed as we did for regular Petri nets. Given a net with boundaries N : k → l,
by choosing a total order on places and transitions, the pre and post-conditions ◦−,
−◦ can be interpreted as matrices of type |T | → |P | and, similarly, •−, −• as matrices
|T | → k and |T | → l respectively. All of these can be represented as Rc diagrams,
say U and V for ◦− and −◦; L and R for •− and −•, respectively. Let

DN =
V

U
|P |

|T |

R

L†
k

l
(5.52)

That this encoding is independent from the choice of ordering on P and T follows
from a reasoning completely analogous to Lemma 144 and we will omit it.

Example 154. The net of Example 151 corresponds to the following Petri diagram:

(5.53)

Proposition 155. D : PTNet→ Petri is a prop morphism.
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This is true for the same reason that there is a prop morphism Dis : InjSpanN →
AddRel (defined in (3.192), Remark 100). D is a functor because composition of nets
with boundaries is defined through a weak pullback of matrices, which, by (3.180) is
sound for composition of Rc diagrams. Diagrammatically,

DM ; DN =
RM

k

l
m

L†N

RN

L†M
VN

VM UN

UM

(5.54)

=

M †

k

p
m

N

VM

VN
L†M

UM

RN

UN (5.55)

= D(M ; N ) (5.56)

where M and N are the matrices obtained from taking the weak pullback of RM and
L†N . Furthermore, D is clearly strictly monoidal.

Proposition 156. Let N : k → l be a net with boundaries. Then Fire (N ) ∼ JDN Kp.

Proof. We reason exactly as in the proof of Proposition 146. As usual, fix a total
order on P and T ; call U , V , L and R the matrices corresponding to ◦−, −◦, •− and

−•, respectively. By definition
((

a
b

)
,

(
a′
c

))
∈ Fire (P) iff there exists t ∈ NT such

that Ut ≤ b, a′ = a − Ut + V t and Lt = b, Rt = c. We also have
u

wwwww
v

V

U
|T |

R

L†
k

l

|P |

|P |

}

�����
~

=


b,

x
y
c


 | ∃t ∈ N|T |, x = Ut,y = V t,

b = Lt, c = Rt



so that, by Lemma 145, we can conclude that((
a
b

)
,

(
a′
c

))
∈ Fire (N ) iff

((
a
b

)
,

(
a′
c

))
∈ JDN Kp.

We can also translate a diagram of Petri into a net with boundaries as follows. Let
d : k → l be a Petri morphism. By Lemma 137, d can be written in trace canonical
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form, i.e., there exists a diagram c ∈ Rc(p + k, p + l) such that (5.7) holds. Choose
a representing matrix A : t → p + k + p + l for c and decompose it into U : t → p,
V : t → p, L : t → k and R : t → l. Then Nd :== (p, t, U, V, L,R) is a Petri net with
boundaries. Reasoning as in Proposition 147, it is not hard to see that the translation
preserves the operational semantics.

While we would like an isomorphism, D is not faithful. This is because PTNet
allows nets with redundant transitions, i.e., transitions that are the sum of other
transitions. For example, these two open nets are different in PTNet but have the
same interpretation in Petri:

D


a

b2 2

 = D
(

c
)

(5.57)

From an operational point of view, redundant transitions are irrelevant as they can
always be simulated by firing the other transitions into which they decompose. In the
example above, we can simulate the firing of transition b by firing c twice simultane-
ously. This explains why we still obtain a semantic equivalence between morphisms
of Petri and PTNet.

5.3 Trace and traces

In this final section we discuss the role of feedback in the resource calculus. The trace
in this prop seems to have a privileged status that sets it apart from its close cousin,
IHK.

The buffer which, as we have seen, plays a central role in the encoding of Petri
nets, requires the specific structure of additive relations and collapses to the total
relation when interpreted as a linear relation:

x
=IH (5.58)

So, if the departure from linear to additive relations seems subtle at first, it does
capture something important about concurrency.

The following two subsections analyse the role of the trace in the stateless and
stateful setting, respectively.
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We have already pointed out that fRel+ embeds into AddRel. We can think of it
as the linear3 or resource-preserving sub-prop of AddRel. From the presentation of
both props, the embedding is clear: we can just map the single bimonoid of fRel+ to
the -bimonoid of AddRel. Moreover, fRel+ can be equipped with the structure of a
trace, implemented via the transitive closure operation. Interestingly, the embedding
fRel+ ↪→ AddRel also preserves the trace, as we show in Section 5.3.1. This means that
the trace of fRel+ can be seen as the shadow of the compact structure (and therefore,
also of the hypergraph structure) of AddRel.

Section 5.3.3 is simply an extended discussion about the role of the trace in
the stateful setting. We examine more behavioural notions of equivalence than
St(AddRel), taking inspiration from the semantics of signal flow graphs. There are
many possibilities to choose from but we limit ourselves to the finest such notion—
trace equivalence—whereby two processes are deemed equivalent when the set of
possible traces of observable values at their boundary are equal. For the first time,
we do not obtain a precise characterisation of the sets of behaviours. Instead, we just
look at the fundamental role that feedback seems to play in this setting, contrasting
it with the case of linear relations.

This is a more exploratory section whose results are only loosely knit together by
a set of intuitions that will require further work to make precise.

5.3.1 Traced monoidal categories

If (self-dual) compact closed categories allow any port to be connected to any other,
irrespective of whether they are in the domain or codomain of morphisms, traced
monoidal categories retain the distinction between inputs and outputs, yet allow for
domains to be connected to codomains (but not domains to domains or codomains
to codomains). The operation that allows this form of feedback is called a trace. The
corresponding notion of traced monoidal category was introduced by Joyal, Street
and Verity in [JSV96].

Definition 157. A traced monoidal category is a smc (C,⊗) with a family of maps
TrXA,B : C(X ⊗A,X ⊗B)→ C(A,B) called the trace (or partial trace) that we depict
as

TrXA,B
(

f X
BA

X
)

= f

X

BA
(5.59)

3Here, we use the term linear in the sense of linear logic: a theory in which resources cannot be
copied or deleted.
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satisfying

Naturality

f

X

BA′ g
A

= f

X

BA′ g
A

(5.60)

f

X

A B′g
B

= f

X

A B′g
B

(5.61)

Dinaturality

f

X

A

h

B
= f

X

A

h

B
(5.62)

Vanishing

f

I

BA
= f BA (5.63)

f

X

BA

Y

= f

X ⊗ Y

BA
(5.64)

Superposing

f

X

BA

DC g

= f

X

BA

DC g

(5.65)

Yanking

XX
= XX (5.66)

Every compact closed category is traced using the cup and cap to connect the X
in the domain to the one in the codomain. The converse statement is not true.

Example 158. The category fRel+ admits a trace, even though it is not compact
closed. Denote by r∗ the reflexive transitive closure of a relation r : m → m. Then,
for r : k +m→ l +m we can define the trace by

Trmk,l(r) = rlk ∪ rmk ; (rmm)∗; rlm (5.67)
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where rii is the restriction to the relevant components: for example rmk = ιk; r; πm
with ιk the insertion of k in k +m and πm the projection of l +m onto m. Even
more explicitly, rmk = r ∩ (k × m). The relation r can be decomposed in this way
because the disjoint sum is a biproduct in Rel.

That (5.67) defines a trace satisfying all the axioms of Definition 157 is well-known
and can be found in the original paper [JSV96][Proposition 6.3].

The point of this section is to show that fRel+ can be embedded into AddRel, by
an embedding that preserves the trace.

The formula in (5.67) is consistent with the interpretation of morphisms in fRel+
in terms of a token flowing around a network, sketched in Chapter 3, Section 3.1.
Recall that each element of k, l and m constitutes a port at which it can enter or exit.
The relation r specifies the connectivity of the network: the particle can go from port
i to port j iff (i, j) ∈ r. The trace is interpreted as a feedback operation sending the
particle exiting at a port i ∈ m back to the same i in input position. This operation
is iterated until it finally exits on some j ∈ l. The following proposition makes the
link between formula (5.67) and this interpretation clearer.

Proposition 159. For a relation r : m→ m,

r∗ =
⋃
n∈N

rn

where rn is the nth power of r, defined inductively by r0 = 1 and rn+1 = rn; r.

Proof. We need to prove that r∗ as defined above is the least reflexive and transitive
relation containing r.

• It contains r because it contains all the rn, in particular r1 = r.

• It is reflexive because for all a ∈ m, (a, a) ∈ 1m = r0 ⊆ r∗.

• It is transitive. Let (a, b) and (b, c) be two pairs of r∗. By definition, they are
in one of the rn, say (a, b) ∈ ri and (b, c) ∈ rj. Then (a, c) ∈ ri+j ⊆ r∗.

• It is minimal. Let s be a reflexive transitive relation containing r. If we want
to show that r∗ ⊆ s, it is enough to show that rn ⊆ s for all n ≥ 0. We can
reason by induction on n. First r0 = 1 ⊆ s by hypothesis. Now assume that
rn ⊆ s for some n ≥ 0. By the monotony of relational composition rn; r ⊆ s; r.
Moreover because r ⊆ s, rn; r ⊆ s; s and since s is transitive, rn; r ⊆ s; s ⊆ s.
Therefore s contains r∗.
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Corollary 160. (a, b) ∈ Trmk,l(r) iff there exists a finite (possibly empty) sequence
p1, . . . , pn ∈ U such that (a, p1) ∈ r, (pk, pk+1) ∈ r and (pn, b) ∈ r.

Proof. We can substitute the result of Proposition 159 into the defining equation of
the trace in fRel+ to get

Trmk,l(r) = rlk ∪ rmk ;
⋃
n∈N

(rmm)n
 ; rlm (5.68)

This tells us that (a, b) ∈ Trmk,l(r) iff either (a, b) ∈ rlk or there exists a sequence
p1, . . . , pn ∈ U such that (a, p1) ∈ rmk , (pi, pi+1) ∈ rmm and (pn, b) ∈ rlm.

Remark 161. As stated above, we can think of this sequence as the trajectory of a
token starting at a whose dynamics is given by iterating r and looping back n times,
as long as the token is in m, before exiting at b. Note that we could have n = 0, in
which case (a, b) ∈ rlk and there is no looping through m.

5.3.2 Embedding relations

Abusing notation slightly, we can also view the multiset functor as an identity-on-
object embedding M : fRel+ ↪→ AddRel which sends a relation r : k → l to its
additive closure Mr, the smallest additive relation containing r. It can be described
more explicitly as

Mr =
{(

n∑
i=1

epi
,
n∑
i=1

fqi

) ∣∣∣∣∣ (pi, qi) ∈ r, 1 ≤ i ≤ n

}
(5.69)

with epi
and fqi

basis vectors of Nk and Nl, respectively. Note how the number of
components of both sums is the same n ∈ N.

Pursuing the particle metaphor, we can interpret M as giving us the ability to
observe the flow of several (indistinguishable) particles at once. They can start at
the same port or at different ports. The next theorem implies that our particle
interpretation is consistent with the feedback operation as well.

The trace in AddRel is given explicitly by

Trmk,l(R) =
{

(a,b) |
((

u
a

)
,

(
u
b

))
∈ R

}
(5.70)

for R : m+ k → m+ l.

Theorem 162. As defined above, M is a traced symmetric monoidal embedding.
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Proof. First, to show that M is an embedding, we need to show is that it is faithful.
Let r, s : k → l be two relations such that Mr = Ms. Then, as they are com-
pletely determined by their restriction to singleton multisets, r = s. And since M
is straightforwardly monoidal, all that remains is to prove that it is traced, i.e., that
M
(
Trmk,l(r)

)
= Trmk,l(Mr). We show the double inclusion.

• First, assume that (a,b) ∈ M
(
Trmk,l(r)

)
. By the definition of the additive

closure in (5.69), there exists p1, . . . , pn ∈ k, q1, . . . , qn ∈ l such that

a =
n∑
i=1

epi
, b =

n∑
i=1

fqi
with (pi, qi) ∈ Trmk,l(r), 1 ≤ i ≤ n. (5.71)

By Corollary 160, for each i we can find a finite sequence t0i , . . . , t
h(i)
i verifying

t0i = pi, th(i)
i = qi, tji ∈ m for 1 ≤ j ≤ h(i)−1 and (tj−1

i , tji ) ∈ rmm for 1 ≤ j ≤ h(i).

We can take sums (the reader is invited to visualise them happening concur-
rently) of these trajectories ; write

u =
n∑
i=1

h(i)−1∑
j=1

dtji (5.72)

with dtji elements of the canonical basis of Nm. Let

p′si+j = tj−1
i for 1 ≤ i ≤ n and 0 ≤ j ≤ h(i)− 1 (5.73)

q′si+j = tj−1
i for 1 ≤ i ≤ n and 1 ≤ j ≤ h(i) (5.74)

where si = ∑i
k=1 h(i) is the partial sum of the lengths of trajectories up to

i, i.e., p′1 = t01, p
′
2 = t11, . . . , p

′
h(1) = t

h(1)
1 , p′h(1)+1 = t02, p

′
h(1)+2 = t12, . . . and

similarly for the q′i. In plain text, p′ is the concatenation of all trajectories tji
in which we leave out the exit port in l and q′ is the concatenation of all the
same trajectories, omitting the entry point in k. They both contain all of the
intermediate elements in m. Then, we have(

h∑
i=1

ep′i ,
h∑
i=1

fq′i

)
=
((

u
a

)
,

(
u
b

))
where h =

n∑
i=1

h(i). (5.75)

so
((

u
a

)
,

(
u
b

))
∈Mr. Hence, (a,b) ∈ Trmk,l(Mr), which is what we wanted to

prove.
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• Conversely, assume that (a,b) ∈ Trmk,l(Mr). Then there exists u ∈ Nm such

that
((

u
a

)
,

(
u
b

))
∈ Mr and by definition of Mr, we can decompose this pair

into a sum of basis elements, say((
u
a

)
,

(
u
b

))
=
(

n∑
i=1

epi
,
n∑
i=1

fqi

)
(5.76)

with (pi, qi) ∈ r for 1 ≤ i ≤ n. Note first that, by definition of Mr, there must
be an equal number of pi and qi that are less than m, for each component of the
pair. Thus, there is also the same number of pi and qi greater than m. Let pj be
the index with the smallest j such that pj > m. We can associate a trajectory
to pj. Let t0j = pj and t1j = qj. If m < qj ≤ m+ l we are done. If qj ≤ m there
exists a smallest j′ such that pj′ = qj. Let t2j = qj′ .

We can repeat this process until we reach an element greater than m, which
necessarily happens in less than n rounds. Then we can start again, to associate
a trajectory to all the m < pi ≤ m + k. This process must also reach all the
qi > m because we associate a qi to each pi in this way and there are the same
number of each that are greater than m. Thus we have built a permutation
σ : {pi | pi > m} → {qi | qi > m} such that (pi, σ(pi)) ∈ Trmk,lr for all pi > m.
Thus  ∑

pi>m

epi
,
∑
pi>m

fσ(pi)

 =
 ∑
pi>m

epi
,
∑
qi>m

fqi

 =
((

0
a

)
,

(
0
b

))
= (5.77)

and finally (a,b) ∈M
(

Trmk,lr
)
.

5.3.3 Stream semantics

We now come to the traces part of this section (and the more speculative part of this
thesis). By “traces” we mean the possibly infinite stream of values that denotes the
pattern of interaction of a process with its environment.

The semantics of stateful systems in St(AddRel) or St(PolyRel) is highly intentional,
closer in spirit to an operational semantics (cf. Remark 139), and too discriminatory
to constitute a useful behavioural equivalence. We would like to find a coarser notion
of equivalence that does not explicitly keep track of any internal state, but only of
the behaviour that processes display at their boundary.
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This has been done successfully for linear systems. In the theory of signal flow
graphs, the diagrams are interpreted as stream transformers. These ideas were already
present in the work of Shannon and were reformulated in categorical terms by [BSZ14,
BSZ15, FSR16]. It is natural to ask whether diagrams of Rcs admit a similar stream
semantics. Because we are missing both additive and multiplicative inverses, the
answer to this question will necessarily be more delicate than for signal flow graphs.

The first difficulty is in circumscribing precisely the sort of behaviours that we
can express. We can turn to signal flow graphs for some inspiration: they admit two
interpretations in terms of linear relations.

(a) As linear subspaces of formal Laurent series (finite in the past, possibly infinite
in the future) [BSZ14, BSZ15]. In operational terms, all registers are initialised
with the value 0.

(b) As linear subspaces of bi-infinite streams (infinite in both directions) [FSR16].
In operational terms, the registers are allowed to contain an arbitrary value at
the start of the computation.

These two interpretations differ fundamentally in what constitute their scalars:
for (a) scalars are polynomial fractions (elements of the field of fractions K(x) of
the ring K[x]) while, for (b), they are polynomials over an indeterminate x and its
formal inverse x−1 (elements of the ring K[x, x−1]). In both cases, to achieve complete
axiomatisations, x interacts nontrivially with the other connectors. As a result,
they define quotients of IHF + X ∼= St(IHF). Both approaches share fundamental
equations:

x
x

x
= x= (5.78)

x
x

x
= x = (5.79)

xx = x x = (5.80)

For (a), there is a realisability theorem [BSZ15, Section 5, Theorem 5] demonstrating
that all sets of streams that can be expressed in IHK(x) are precisely the rational
behaviours, i.e., matrices over the ring of rationals K〈x〉 (polynomial fractions whose
denominator has non-zero leading coefficient). This correspondence holds at the level
of the underlying sets and not for the relations themselves: every linear relation
over K(x) is equal—as a set—to the graph of a matrix over K〈x〉, possibly with
its input and output ports reshuffled. This result is important in operational terms
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because it connects IHK(x) with automata theory. Indeed, rational behaviours are
those recognised by K-weighted finite-state machines. This is a consequence of the
fact that ∑

n≥0
xn = 1

1− x (5.81)

This equality reduces iteration to taking multiplicative inverses of polynomials (with
non-zero leading coefficient). Its diagrammatic translation is

x =
x

(5.82)

Recall that the scalar denoted by a dot is −1.
From this, we can prove ([Zan15, Theorem 4.21]) that MatK〈x〉 is isomorphic to

the subprop SF of IHK(x) defined inductively as follows:

• if d is in image of the embedding of MatK[x], then it is in SF;

• if d : k + 1→ l + 1 is in SF, then

d lk
x

(5.83)

is also in SF;

• c : k → l and d : l→ m are in SF, then so is c ; d;

• d1 : k1 → l1 and d2 : k2 → l2 are in SF, then so is d1 ⊕ d2.

Note that the notion of trace that defines SF is not the categorical trace induced by the
compact structure but a guarded version, with x as guard. The correspondence
between SF and MatK〈x〉 is interesting because traced monoidal categories are not
generally presented by a symmetric monoidal signature.

For N, because we lack additive and multiplicative inverses, equation (5.81) does
not hold and the behaviour of the buffer

x
(5.84)

cannot be reduced to division by the scalar 1 − x. As a result, the guarded trace of
(the equivalent of) SF over the naturals cannot be further decomposed. We do not
know how to present this traced monoidal category by a monoidal signature (in fact,
we conjecture that this is not possible).
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Furthermore, as we mentioned above, the asynchronous buffer

x
(5.85)

reduces to the total relation, when interpreted as a linear relation. Indeed, the pos-
sibility of storing negative values in the register affords transitions with arbitrary
numbers on the left and on the right ports. The reader is invited to refer back to
the equations of IHF in Fig. 2.3, with F the field of fractions of some polynomial ring
K[x], to follow the graphical proof below.

x
=

x
(5.86)

=
x

(5.87)

=
x

(5.88)

=
x

(5.89)

=
p

where p = 1− x (5.90)

=
p

(5.91)

=
p

(5.92)

=
p

(5.93)

=
p

(5.94)

=
p

(5.95)

=
p

(5.96)

=
p

(5.97)

= (5.98)
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= (5.99)

The preceding discussion suggests that the sets of behaviours captured by inter-
preting Rcs on streams are richer than those of IH and that the trace plays an essential
role. The bad news is that this makes it a lot harder to axiomatise. However, we
believe that it will lead to new and fruitful connections with automata theory, in
particular with the axiomatisation of Kleene algebras, as given in [Koz94]. Indeed,
many of the axioms in this work can be derived purely diagrammatically and those
that resist a diagrammatic interpretation point us in interesting directions for new
research.
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Chapter 6

Conclusion

We set out with the objective of characterising the equational theory of the connector
algebras of [BMM11] and this has led us to develop Rc.

The resource calculus combines the advantages of syntax-free approaches to the
specification of distributed systems, such as Petri nets, with the modularity of process
algebras. Its semantics, in terms of additive relations, recognises the central role of
resources in concurrency. It is formulated within an elegant graphical formalism that
borrows its basic constituents from signal flow graphs. Furthermore, the addition of
constant resources and state to the language extends its expressive power to capture
a wider class of behaviours, from the stateless primitives of coordination languages
to the labelled transition systems of Petri nets.

From a theoretical perspective, the resource calculus undoubtedly has something
fundamental to say about the structures of concurrency, as our two main case studies
demonstrate. From a more practical point of view, it is perhaps more difficult to
evaluate our contribution at this point. We will have to wait and see whether the
resource calculus is adopted by others to shed light on old problems and, maybe,
contribute to solve them.

We believe that the resource calculus opens up several interesting avenues of re-
search, some of which we have discussed in the main development. These are the
subjects of ongoing work.

Develop a modular perspective on additive/polyhedral relations. The
completeness of the resource calculus for additive relations relies on a somewhat mono-
lithic proof technique. In particular, it presents a challenge for the modular approach
of [Zan15]. With these methods, it is possible to build complete calculi for categories
of relations progressively, from those of sub-categories, as long as they admit colimits
and compatible factorisation systems [FZ17]. Unfortunately, as highlighted in Section
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3.8, this is far from being the case for the category of matrices over an arbitrary semir-
ing. However, we still have access to weak colimits and minimal representations. We
hope to investigate how to exploit the existing structure to derive distributive laws
or any new mathematically principled way to combine presentations of sub-theories
[Had17].

Design efficient rewriting procedures for the resource calculus. If string
diagrams are powerful and intuitive tools to reason about open systems, the complex-
ity of the equational theory of the resource calculus can be prohibitive when dealing
with large diagrams. Therefore, it is natural to look for rewriting systems and reduc-
tion strategies to assist or even automate the derivation of complicated equalities. In
recent years, several authors have developed a solid foundation for diagram rewrit-
ing [BGK+16], especially modulo the axioms of Frobenius monoids [BGK+18]. And,
contrary to IHK, the resource calculus only contains one Frobenius monoid, thus pro-
viding a more immediate application of existing results. In addition, the same authors
have proposed a terminating procedure for rewriting with the bimonoid axioms. We
would like to leverage this procedure in future work. Finally, this project is intimately
related to the outcome of the first line of work, as distributive laws do not only give
modular perspective on complex theories but correspond to weakly normalising and
confluent rewriting systems.

Enrich the existing calculi to capture coarser notions of equivalences.
The stateful resource calculus satisfactorily models of a very intensional notion of
process equivalence. We would like to quotient it to capture coarser forms of equiv-
alence, like trace equivalence and bisimilarity. it is not clear what the corresponding
semantics should be. Clarifying this would be an important breakthrough. Another
related problem is to look for the equations that the asynchronous buffer should sat-
isfy directly—without encoding it with the register—to understand the differences
between asynchronous and synchronous state at the axiomatic level.

Extend existing applications to the verification of concurrent systems.
Various model-checking problems for distributed systems can be formulated in terms
of Petri net reachability. While most existing approaches favour a non-compositional
and globally-specified model, Pawe l Sobociński and his collaborators have developed
Penrose, a compositional reachability checker for C/E nets nets [SS13, RSS14]. Their
algorithm exploits compositionality by decomposing nets into smaller components,
mapping them to NFA that encode the reachability problem for each of them and
combining the results at the semantic level. It also exploits process equivalence for ef-
ficiency, in order to discard redundant internal states without changing the behaviour
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of the automaton. Provided with the right decomposition, this procedure has been
shown to outperform many of the existing tools. We believe that the resource calcu-
lus can provide a basis to reason about process equivalence for larger classes of Petri
nets and therefore extend the range of applications of Penrose. Beyond reachability,
there are many other properties worth tackling from a compositional point of view:
liveness, safety, coverability and fairness to name only a few.

Explore links to linear and convex optimisation. Additive and polyhedral
relations over R+ correspond respectively to polyhedral cones and polyhedra in the
sense of convex geometry. These are the basic building blocks of constraint sets in
linear programming. While we have little hope that optimisation itself is composi-
tional, it would be worthwhile to study duality theorems from this category-theoretic
perspective. Furthermore, we could carry the same exploratory work to try to re-
formulate some fundamental results of integer linear programming from the point of
view of additive/polyhedral relations and understand their relative complexity at this
level.
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