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String diagrams for open systems

Signal flow graphs Petri nets

Quantum circuitsElectrical circuits

Finite-state automata



  

Compositional modelling

● Compositional = functorial semantics:

⟦-⟧ : 2D Syntax
(String diagrams)

Behaviour

Symmetric monoidal categories



  

Compositional modelling

● Compositional = functorial semantics:

⟦-⟧ : 2D Syntax
(String diagrams)

Behaviour

Symmetric monoidal functor

The behaviour of the whole can be 
computed from the behaviour of its parts.



  

Compositional modelling

● Compositional = functorial semantics:

● One step further: complete equational theory, 
aka axiomatisation.

⟦-⟧ : 2D Syntax
(String diagrams)

Behaviour

Symmetric monoidal functor
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Background



  

Nondeterministic finite automata

● NFA are traditionally encoded by a tuple 

(alphabet of basic actions, states, transition relation, initial state, 
accepting states) 

● Example. 

more conveniently:

● Recognised language: set of strings w = a1a2...an    for which 

there exists a sequence of states r0, r1, …, rn        such that r0 = q0 (ri, 
ai+1, ri+1)  δ               and r∈ δ               and r n  F   .∈ δ               and r



  

Regular expressions

Kleene theorem. A language is regular if and 
only if it is recognised by some NFA. 

Union Concatenation Iteration
Empty

set
Empty
word



  

Kleene algebra

● Equational presentation of regular expressions:
– Sum and concatenation (with their units) form an idempotent 

semiring
– e* is the least-fixed point of, e.g., X = 1 + eX. But what axioms?

● Not finitely-based: no finite set of equations can capture 
all equalities in the language model [Redko, 1964]

● Finite implicational theory [Kozen, 1994]:

                                                           (star is a fixed-point)

                                                           (star is the least one)
● Other axiomatisations (some infinitary): Conway, Krob, 

Salomaa, Kozen, Bloom, Ésik...



  

Kleene diagrams: first attempt



  

Diagrams for automata

Monotone Relations
(aka Relational/Boolean profunctors,

Weakening relations...)

Objects are posets and
morphisms 
relations                   such that 



  

Diagrams for automata

Monotone Relations
(aka Relational/Boolean profunctors,

Weakening relations...)

Compose as relations, with 
as identity                               .

Symmetric monoidal category 
with product of posets.



  

Diagrams for automata

Two generating objects with 
identities given by the inclusion 
relations on languages:



  

Diagrams for automata

Delete

Copy



  

Diagrams for automata

Empty set

Union



  

Diagrams for automata

Plumbing



  

Diagrams for automata

Right-action of      by concatenation



  

Compositionality

...means that



  

Sanity check: NFA

● Formal encoding from tuples definition is tedious.
● Intuition via graphical notation:

● Theorem. Given an NFA which recognises a language L, the 
semantics of its associated diagram, constructed as above, is



  

Sanity check: regexes

● We can encode regexes as follows

● Proposition. The encoding preserves the 
semantics, i.e., for any expression e, 

Semantic functor

Regex encoding Standard regex interpretation



  

What else?

● Benefits of (de)compositionality

● Gives formal status to automata with multiple 
inputs/outputs.

● But no more expressive: every diagram is fully 
characterised by its domain, codomain, and an array of 
regular languages.

✂

Beware! Do not necessarily coincide with initial/accepting states in the usual definition.



  

A more concrete view

A diagrammatic language to specify systems of 
linear language inequalities, i.e. for which 
concatenation is restricted to left-action of 
letters. 



  

Equational theory



  

Plain wires

● We have a compact closed category: we can 
bend/straighten wires at will, keeping track of 
only their orientation

● … and we can eliminate isolated loops



  

Copy and Sum

● Cocommutative comonoid

● Commutative monoid

● Bimonoid



  

Copy and Sum

● Idempotent

● Getting rid of trivial feedback



  

Concatenation

● Letters can be copied and deleted...

● ...merged and spawned



  

The problem with iteration

● Recall: Kleene algebra not finitely-based in the 
standard algebraic setting. The main obstacle is 
iteration (represented by the star). 

● Here it is a derived notion, made up of more 
primitive components:

● But the problem did not disappear. 



  

The problem with iteration

● Simple check: we should be able to 
copy/delete/merge/spawn an expression in a loop. 
For example,

● Incompleteness: we cannot prove this with just the 
current axioms. 

● Even if we add it, we need to be deal with 
arbitrary nestings of loops with other operations. 



  

One solution
● Impose global (so infinitary) axiom schemes.

● Definition. A diagram is left-to-right if it has all inputs in its 
domain and all outputs in codomain.

● For any left-to-right diagram d, we want

● By fiat: similar to matricial iteration theories [Bloom and 
Ésik, 93] although, even relative to this setting, they did not 
produce a finitary axiomatisation for regular languages.



  

Semantics of least fixed-points
● Monotone maps embed into monotone relations: f is 

sent to {(x,y) | f(x) ≤ y}.
● A relation satisfies copying and deleting,

iff it is the image of a monotone map.
● The semantics of e* is the least fixed-point of the 

language map f = λZ. X U eZ. This is still (the image 
of) a monotone map in X, i.e.,  
– (del) means the least fixed-point exists for every  X;
– (cpy) means it is unique. 



  

Kleene diagrams: reprise



  

A trick: bringing back regexes

● Extend the syntax with regular expressions on 
a separate wire type:

● Note that this is just syntax. Their interpretation 
is the free term algebra of regexes.  

copy delete



  

A trick: bringing back regexes

● Syntax: replace           with general action of any regex 
(not just the letters) via 

● Semantics: regex acting on languages by 
concatenation on the left

● We recover the atomic actions as
● String diagrams for generalised automata with 

transitions labelled by arbitrary regexes: 

Interpretation of the regex e
(a regular language)

Free (uninterpreted) term
algebra of regexes



  

Axiomatising the action (1/2)

Capturing the behaviour of the action:
– Concatenation and empty word

– Union and empty language

– Iteration



  

Unfolding/compiling regexes

Example. 



  

Theorem (Completeness). Two diagrams are equal iff 
they are mapped to the same monotone relation.
 

Axiomatising the action (2/2)

Back to the original problem:
– Copy and delete arbitrary regexes

– Merge and spawn arbitrary regexes



  

Completeness proof outline

● Normal form argument: diagrammatic counterpart of 
constructing the minimal deterministic automaton that 
recognises the same language
– An automaton is deterministic (DFA) if its transition relation is the graph of a 

function                       .

– Among the finite-state automata that recognise a given language, there is a 
unique DFA with the smallest number of states. This is our normal form.

● Obtained via Brzozowski’s algorithm, implemented as 
equational reasoning:

            reverse; determinise; reverse; determinise

Key stepJust determinisation in reverse: immediate 
by the symmetries of the equational theory.
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Determinisation, traditionally

For an NFA given by the tuple

an equivalent (i.e. that recognises the same language) DFA is 
given by 

where

and G is the set of subsets of Q that contain at least one 
accepting state. 

0
1 2

{0}

{ }

{1} {2}{1} {1,2}

+ other unreachable
Subsets (not pictured)



  

Determinisation, diagrammatically

● Nondeterministic transitions of automata correspond to 
subdiagrams of the form 

  
● Useless states (those that cannot reach an accepting state/

contribute to the semantics) correspond to subdiagrams of 
the form

● To get rid of them, just apply (not haphazardly, check the 
paper for details):

(or where )

(or )



  

Diagrammatic determinisation 
example



  

Left-to-right diagrams again
● Now we can prove that, for any left-to-right diagram d

● Subcategory of left-to-right diagrams maps to a category 
of matrices over the semiring of regular languages, with 
matrix product as composition and direct sum as product.

● Two uses: 1) reduces the completeness proof to diagrams 
with one input and one output; 2) is the engine of the 
diagrammatic determinisation procedure.



  

Diagrammatic determinisation 
example



  

Bonus: context-free languages

● Recall that we designed a language to specify systems of linear 
language inequations. 

● Remove the linearity constraint: unconstrained concatenation gives 
systems of polynomial language inequations.

● Diagrammatically, turn           into             and               into               
with

● We can specify context-free languages. For example, the language 
of properly matched parentheses:

Formal version of
syntax/railroad diagrams
used in programming to

define syntax.



  

Discussion

● What’s new? A finite presentation of a symmetric monoidal 
category (SMC) that axiomatises automata equivalence.

● In what sense is it finite? Debatable: not in the usual sense of 
algebraic theories, but relative to the equational theory of SMCs. 
– If we encode terms using only ; and , it is infinite. ⊗, it is infinite. 
– But we should encode them as graphs (and equations as graph 

rewrites).
● Is it really new? All previous work was in a traced symmetric 

monoidal setting (iteration theories of Bloom & Ésik or network 
algebra of Stefanescu). But:
– Still no finite axiomatisations of regular languages in these settings.
– The trace is a global operation that cannot be finitely axiomatised 

relative to the theory of symmetric monoidal categories.



  

Discussion

● Why does this work? Slightly mysterious, perhaps better 
compositionality. 
– Not the first time that a finite axiomatisation of a theory that is 

provably not finitely-based in the standard algebraic setting: 
graphical conjunctive queries vs. allegories, for example.

– Proofs of negative results in the algebraic setting rely on 
showing the correspondence between terms and certain 
graphs. The two-dimensional syntax allows to represent all 
graphs/automata. 



  

Future work

● This category of monotone relations over languages has very 
rich hidden structure: 
– Cartesian bicategory with inclusions of relations as 2-cells;
– adjoints (in the bicategorical sense) to copy and sum that 

represent the Boolean lattice structure of languages (not just the 
order). 

● Using this more expressive language, a generalisation of 
bisimulation can be defined and is sufficient to prove that two 
diagrams corresponding to equivalent automata are equal.

● But not yet a complete equational theory for the whole 
extended syntax.

● This seems to correspond to alternating automata. 



  

Questions?


