

A diagrammatic axiomatisation
of finite-state automata

Robin Piedeleu & Fabio Zanasi

arXiv:2009.14576

Séminaire PPS, Novembre 2020

String diagrams for open systems

Signal flow graphs Petri nets

Quantum circuitsElectrical circuits

Finite-state automata

Compositional modelling

● Compositional = functorial semantics:

⟦-⟧ : 2D Syntax
(String diagrams)

Behaviour

Symmetric monoidal categories

Compositional modelling

● Compositional = functorial semantics:

⟦-⟧ : 2D Syntax
(String diagrams)

Behaviour

Symmetric monoidal functor

The behaviour of the whole can be
computed from the behaviour of its parts.

Compositional modelling

● Compositional = functorial semantics:

● One step further: complete equational theory,
aka axiomatisation.

⟦-⟧ : 2D Syntax
(String diagrams)

Behaviour

Symmetric monoidal functor

Today

1. Background
– Finite-state automata

– Regular expressions and Kleene algebra

2. Kleene diagrams: first attempt
– Syntax and Semantics

– Encoding regexes and NFA

– Equational theory: the problem with iteration

3. Kleene diagrams: reprise
– Bringing back regexes

– Axiomatisation

– Sketch of the completeness proof

4. Discussion and future work

Background

Nondeterministic finite automata

● NFA are traditionally encoded by a tuple

(alphabet of basic actions, states, transition relation, initial state,
accepting states)

● Example.

more conveniently:

● Recognised language: set of strings w = a1a2...an for which

there exists a sequence of states r0, r1, …, rn such that r0 = q0 (ri,
ai+1, ri+1) δ and r∈ δ and r n F .∈ δ and r

Regular expressions

Kleene theorem. A language is regular if and
only if it is recognised by some NFA.

Union Concatenation Iteration
Empty

set
Empty
word

Kleene algebra

● Equational presentation of regular expressions:
– Sum and concatenation (with their units) form an idempotent

semiring
– e* is the least-fixed point of, e.g., X = 1 + eX. But what axioms?

● Not finitely-based: no finite set of equations can capture
all equalities in the language model [Redko, 1964]

● Finite implicational theory [Kozen, 1994]:

 (star is a fixed-point)

 (star is the least one)
● Other axiomatisations (some infinitary): Conway, Krob,

Salomaa, Kozen, Bloom, Ésik...

Kleene diagrams: first attempt

Diagrams for automata

Monotone Relations
(aka Relational/Boolean profunctors,

Weakening relations...)

Objects are posets and
morphisms
relations such that

Diagrams for automata

Monotone Relations
(aka Relational/Boolean profunctors,

Weakening relations...)

Compose as relations, with
as identity .

Symmetric monoidal category
with product of posets.

Diagrams for automata

Two generating objects with
identities given by the inclusion
relations on languages:

Diagrams for automata

Delete

Copy

Diagrams for automata

Empty set

Union

Diagrams for automata

Plumbing

Diagrams for automata

Right-action of by concatenation

Compositionality

...means that

Sanity check: NFA

● Formal encoding from tuples definition is tedious.
● Intuition via graphical notation:

● Theorem. Given an NFA which recognises a language L, the
semantics of its associated diagram, constructed as above, is

Sanity check: regexes

● We can encode regexes as follows

● Proposition. The encoding preserves the
semantics, i.e., for any expression e,

Semantic functor

Regex encoding Standard regex interpretation

What else?

● Benefits of (de)compositionality

● Gives formal status to automata with multiple
inputs/outputs.

● But no more expressive: every diagram is fully
characterised by its domain, codomain, and an array of
regular languages.

✂

Beware! Do not necessarily coincide with initial/accepting states in the usual definition.

A more concrete view

A diagrammatic language to specify systems of
linear language inequalities, i.e. for which
concatenation is restricted to left-action of
letters.

Equational theory

Plain wires

● We have a compact closed category: we can
bend/straighten wires at will, keeping track of
only their orientation

● … and we can eliminate isolated loops

Copy and Sum

● Cocommutative comonoid

● Commutative monoid

● Bimonoid

Copy and Sum

● Idempotent

● Getting rid of trivial feedback

Concatenation

● Letters can be copied and deleted...

● ...merged and spawned

The problem with iteration

● Recall: Kleene algebra not finitely-based in the
standard algebraic setting. The main obstacle is
iteration (represented by the star).

● Here it is a derived notion, made up of more
primitive components:

● But the problem did not disappear.

The problem with iteration

● Simple check: we should be able to
copy/delete/merge/spawn an expression in a loop.
For example,

● Incompleteness: we cannot prove this with just the
current axioms.

● Even if we add it, we need to be deal with
arbitrary nestings of loops with other operations.

One solution
● Impose global (so infinitary) axiom schemes.

● Definition. A diagram is left-to-right if it has all inputs in its
domain and all outputs in codomain.

● For any left-to-right diagram d, we want

● By fiat: similar to matricial iteration theories [Bloom and
Ésik, 93] although, even relative to this setting, they did not
produce a finitary axiomatisation for regular languages.

Semantics of least fixed-points
● Monotone maps embed into monotone relations: f is

sent to {(x,y) | f(x) ≤ y}.
● A relation satisfies copying and deleting,

iff it is the image of a monotone map.
● The semantics of e* is the least fixed-point of the

language map f = λZ. X U eZ. This is still (the image
of) a monotone map in X, i.e.,
– (del) means the least fixed-point exists for every X;
– (cpy) means it is unique.

Kleene diagrams: reprise

A trick: bringing back regexes

● Extend the syntax with regular expressions on
a separate wire type:

● Note that this is just syntax. Their interpretation
is the free term algebra of regexes.

copy delete

A trick: bringing back regexes

● Syntax: replace with general action of any regex
(not just the letters) via

● Semantics: regex acting on languages by
concatenation on the left

● We recover the atomic actions as
● String diagrams for generalised automata with

transitions labelled by arbitrary regexes:

Interpretation of the regex e
(a regular language)

Free (uninterpreted) term
algebra of regexes

Axiomatising the action (1/2)

Capturing the behaviour of the action:
– Concatenation and empty word

– Union and empty language

– Iteration

Unfolding/compiling regexes

Example.

Theorem (Completeness). Two diagrams are equal iff
they are mapped to the same monotone relation.

Axiomatising the action (2/2)

Back to the original problem:
– Copy and delete arbitrary regexes

– Merge and spawn arbitrary regexes

Completeness proof outline

● Normal form argument: diagrammatic counterpart of
constructing the minimal deterministic automaton that
recognises the same language
– An automaton is deterministic (DFA) if its transition relation is the graph of a

function .

– Among the finite-state automata that recognise a given language, there is a
unique DFA with the smallest number of states. This is our normal form.

● Obtained via Brzozowski’s algorithm, implemented as
equational reasoning:

 reverse; determinise; reverse; determinise

Key stepJust determinisation in reverse: immediate
by the symmetries of the equational theory.

Completeness proof outline

● Normal form argument: diagrammatic counterpart of
constructing the minimal deterministic automaton that
recognises the same language
– An automaton is deterministic (DFA) if its transition relation is the graph of a

function .

– Among the finite-state automata that recognise a given language, there is a
unique DFA with the smallest number of states. This is our normal form.

● Obtained via Brzozowski’s algorithm, implemented as
equational reasoning:

 reverse; determinise; reverse; determinise

Key stepJust determinisation in reverse: immediate
by the symmetries of the equational theory.

Determinisation, traditionally

For an NFA given by the tuple

an equivalent (i.e. that recognises the same language) DFA is
given by

where

and G is the set of subsets of Q that contain at least one
accepting state.

0
1 2

{0}

{ }

{1} {2}{1} {1,2}

+ other unreachable
Subsets (not pictured)

Determinisation, diagrammatically

● Nondeterministic transitions of automata correspond to
subdiagrams of the form

● Useless states (those that cannot reach an accepting state/

contribute to the semantics) correspond to subdiagrams of
the form

● To get rid of them, just apply (not haphazardly, check the
paper for details):

(or where)

(or)

Diagrammatic determinisation
example

Left-to-right diagrams again
● Now we can prove that, for any left-to-right diagram d

● Subcategory of left-to-right diagrams maps to a category
of matrices over the semiring of regular languages, with
matrix product as composition and direct sum as product.

● Two uses: 1) reduces the completeness proof to diagrams
with one input and one output; 2) is the engine of the
diagrammatic determinisation procedure.

Diagrammatic determinisation
example

Bonus: context-free languages

● Recall that we designed a language to specify systems of linear
language inequations.

● Remove the linearity constraint: unconstrained concatenation gives
systems of polynomial language inequations.

● Diagrammatically, turn into and into
with

● We can specify context-free languages. For example, the language
of properly matched parentheses:

Formal version of
syntax/railroad diagrams
used in programming to

define syntax.

Discussion

● What’s new? A finite presentation of a symmetric monoidal
category (SMC) that axiomatises automata equivalence.

● In what sense is it finite? Debatable: not in the usual sense of
algebraic theories, but relative to the equational theory of SMCs.
– If we encode terms using only ; and , it is infinite. ⊗, it is infinite.
– But we should encode them as graphs (and equations as graph

rewrites).
● Is it really new? All previous work was in a traced symmetric

monoidal setting (iteration theories of Bloom & Ésik or network
algebra of Stefanescu). But:
– Still no finite axiomatisations of regular languages in these settings.
– The trace is a global operation that cannot be finitely axiomatised

relative to the theory of symmetric monoidal categories.

Discussion

● Why does this work? Slightly mysterious, perhaps better
compositionality.
– Not the first time that a finite axiomatisation of a theory that is

provably not finitely-based in the standard algebraic setting:
graphical conjunctive queries vs. allegories, for example.

– Proofs of negative results in the algebraic setting rely on
showing the correspondence between terms and certain
graphs. The two-dimensional syntax allows to represent all
graphs/automata.

Future work

● This category of monotone relations over languages has very
rich hidden structure:
– Cartesian bicategory with inclusions of relations as 2-cells;
– adjoints (in the bicategorical sense) to copy and sum that

represent the Boolean lattice structure of languages (not just the
order).

● Using this more expressive language, a generalisation of
bisimulation can be defined and is sufficient to prove that two
diagrams corresponding to equivalent automata are equal.

● But not yet a complete equational theory for the whole
extended syntax.

● This seems to correspond to alternating automata.

Questions?

